UVA - 10229 Modular Fibonacci 矩阵快速幂
Modular Fibonacci
The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) are defined by the recurrence:
F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i > 1
Write a program which calculates Mn = Fn mod 2m for given pair of n and m. 0 ≤ n ≤ 2147483647
and 0 ≤ m < 20. Note that a mod b gives the remainder when a is divided by b.
Input
Input consists of several lines specifying a pair of n and m.
Output
Output should be corresponding Mn, one per line.
Sample Input
11 7
11 6
Sample Output
89
25
题解:
由于n<=2 147 483 647,直接for会超时。用矩阵快速幂就好了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;
ll MOD;
struct Matrix {
ll mat[][];
}U,F;
Matrix multi (Matrix a, Matrix b) {
Matrix ans;
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
ans.mat[i][j] = ;
for(int k = ; k < ; k++)
ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
ans.mat[i][j] %= MOD;
}
}
return ans;
}
Matrix powss(ll n) {
Matrix ans = U,p = F;
while(n) {
if(n&) ans = multi(ans,p);
n>>=;
p = multi(p,p);
}
return ans;
}
int main() {
U = {,,,};
F = {,,,};
ll n,m;
while(~scanf("%lld%lld",&n,&m)) {
MOD = 1ll<<m;
Matrix ans = powss(n);
printf("%lld\n",ans.mat[][]);
}
return ;
}
UVA - 10229 Modular Fibonacci 矩阵快速幂的更多相关文章
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- poj3070 Fibonacci 矩阵快速幂
学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...
- UVA 10229 Modular Fibonacci
斐波那契取MOD.利用矩阵快速幂取模 http://www.cnblogs.com/Commence/p/3976132.html 代码: #include <map> #include ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- $loj$10222 佳佳的$Fibonacci$ 矩阵快速幂
正解:矩阵快速幂 解题报告: 我永远喜欢loj! 一看到这个就应该能想到矩阵快速幂? 然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$ 其实不难想到,$\s ...
- POJ 3070 Fibonacci矩阵快速幂 --斐波那契
题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...
随机推荐
- CSDN的技术问题
说CSDN是国内最大最好的技术论坛.预计不会有人反对,可是...CSDN的人,如管理员懂技术吗? 假设您长期在CSDN混.您就会发现他们相当懂得......强奸技术!
- 2015.05.15,外语,学习笔记-《Word Power Made Easy》 01 “如何讨论人格特点”
2015.03.17,外语,读书笔记-<Word Power Made Easy> 01 “如何讨论人格特点”学习笔记 SESSIONS 1 本来这些章节都是在一两年前学习的,现在趁给友人 ...
- BZOJ1492:[NOI2007]货币兑换 (CDQ分治+斜率优化DP | splay动态维护凸包)
BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的 ...
- CGContext含义
代码 含义 CGContextRef context = UIGraphicsGetCurrentContext(); 设置上下文 CGContextMoveToPoint 开始画线 CGContex ...
- php面向对象之构造函数和析构函数
php面向对象之构造函数和析构函数 简介 php面向对象支持两种形式的构造函数和析构函数,一种是和类同名的构造函数(php5.5之前),一类是魔术方法(php5.5之后).与类名相同的构造函数优先级比 ...
- POJ 2446 匈牙利算法
题意: 思路: 二分图匹配... // by SiriusRen #include <cmath> #include <cstdio> #include <cstring ...
- adplus 抓取dump
工具所在路径 C:\Program Files\Windows Kits\10\Debuggers\x64 cmd窗口切换目录倒adplus所在路径下,输入抓取命令.adplus -hang -p ...
- 高并发之后端优化(PHP)
页面静态化 使用模板引擎 可以使用Smarty的缓存机制生成静态HTML缓存文件 $smarty->cachedir=$ROOT·"/cache"://缓存目录 $smart ...
- tp5页面跳转,空控制器空方法
namespace app\index\controller; use think\Controller; class Login extends Controller{ //显示html页面 pub ...
- 设置cookie,删除cookie,读取cookie
1.首先来说下cookie的作用 我们在浏览器中,经常涉及到数据的交换,比如你登录邮箱,登录一个页面.我们经常会在此时设置30天内记住我,或者自动登录选项.那么它们是怎么记录信息的呢,答案就是今天的主 ...