两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4
由题意可以得到一个方程:设题t次他们见面,,圈数为k; 则(m-n)*t=k*L+(y-x)(k=0,1,2,3,4.......)
求t的最小正整数解
方程和 a*x+b*y=t类似,可以通过扩展欧几里得定理来求方程的不定解
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cstdlib>
#include<string>
#define eps 0.000000001
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int N=;
ll gcd(ll a,ll b){
if(b==)return a;
else{
return gcd(b,a%b);
}
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==){
x=;y=;return a;
}
ll r=exgcd(b,a%b,x,y);
int t=y;
y=x-(a/b)*y;
x=t;
return r;
}
int main(){
//(n-m)*t+k*l=x-y;
ll x,y,m,n,l;
ll a,b;
while(scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l)!=EOF){
a=n-m;
b=l;
ll r=x-y;
ll c=gcd(a,b);
ll t1,t2;
if(r%c!=){cout<<"Impossible"<<endl;continue;}
ll ans=exgcd(a,b,t1,t2);
t1=r*t1/ans; //首先令x为一个特解
t1 =(t1 % (b/ans)+(b/ans)) % (b/ans); //再根据公式计算
printf("%I64d\n",t1);
}
}
 

poj 1061(扩展欧几里得定理求不定方程)的更多相关文章

  1. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  2. POJ 1061 扩展欧几里得

    #include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...

  3. hdu2669-Romantic-(扩展欧几里得定理)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. poj1061-青蛙的约会-(贝祖定理+扩展欧几里得定理+同余定理)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:132162   Accepted: 29199 Descripti ...

  5. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  6. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  7. 扩展欧几里得(exgcd)-求解不定方程/求逆元

    贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个 ...

  8. poj 2115 扩展欧几里得

    题目链接:http://poj.org/problem?id=2115 题意: 给出一段循环程序,循环体变量初始值为 a,结束不等于 b ,步长为 c,看要循环多少次,其中运算限制在 k位:死循环输出 ...

  9. hdu3579-Hello Kiki-(扩展欧几里得定理+中国剩余定理)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. service里设置websocket心跳并向fragment发送数据

    垃圾小白写了自己看的 /** * service 文件 */ public class SocketService extends Service { //自己定义接口用来传参 private sta ...

  2. 利用js写全选操作

    <script type="text/javascript"> function checkall(qx) { var ck=document.getElementsB ...

  3. 开发日记(项目中SQL查询的优化)

    今天发现自己之前写的一些SQL查询在执行效率方面非常不理想,于是尝试做了些改进. 需求为查询国地税表和税源表中,国税有而税源没有的条目数,之前的查询如下: SELECT COUNT(NAME)     ...

  4. 关闭掉eclipse启动的自动更新功能(提高打开eclipse的速度)

  5. Quartz实战

    https://my.oschina.net/yinxiaoling/blog/542336?fromerr=s3ko7u33 Quartz实战 > 一.内存型(1) <bean name ...

  6. [C++] 配平化学方程式算法的封装

    有人已经实现了配平的方法,在此不再重复介绍. https://www.cnblogs.com/Elfish/p/7631603.html 但是,上述的方法所提供的代码还是存在着问题,需要进一步修改. ...

  7. vim使用配置-python

    安装vundle git clone https://github.com/gmarik/Vundle.vim.git ~/.vim/bundle/Vundle.vim 添加配置文件 vim ~/.v ...

  8. Flask - 特殊装饰器 和 Flask工作结构模式(FBV, CBV)

    目录 Flask - 特殊装饰器 和 Flask工作结构模式 @app.errorhandler() @app.before_request @app.after_request FBV和CBV Fl ...

  9. Serial Fluent UDF on Windows

    test test Table of Contents 1. Serial UDF on Windows OS 1 Serial UDF on Windows OS Note: Udf has to ...

  10. 【codeforces 758D】Ability To Convert

    [题目链接]:http://codeforces.com/contest/758/problem/D [题意] 给你一个n进制的数k; 问你它可能的最小的十进制数是多少; [题解] 从右往左; 获取数 ...