Normalization

 

Normalization

local_response_normalization

local_response_normalization出现在论文”ImageNet Classification with deep Convolutional Neural Networks”中,论文中说,这种normalization对于泛化是有好处的.

bix,y=aix,y(k+α∑min(0,i+n/2)j=max(0,i−n/2)(ajx,y)2)β

经过了一个conv2d或pooling后,我们获得了[batch_size, height, width, channels]这样一个tensor.现在,将channels称之为层,不考虑batch_size

  • i代表第i层
  • aix,y就代表 第i层的 (x,y)位置所对应的值
  • n个相邻feature maps.
  • k...α...n...β是hyper parameters
  • 可以看出,这个函数的功能就是, aix,y需要用他的相邻的map的同位置的值进行normalization
    在alexnet中, k=2,n=5,α=10−4,β=0.75
tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)
'''
Local Response Normalization.
The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail,
'''
"""
input: A Tensor. Must be one of the following types: float32, half. 4-D.
depth_radius: An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window.
bias: An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).
alpha: An optional float. Defaults to 1. A scale factor, usually positive.
beta: An optional float. Defaults to 0.5. An exponent.
name: A name for the operation (optional).
"""
  • depth_radius: 就是公式里的n/2
  • bias : 公式里的k
  • input: 将conv2d或pooling 的输出输入就行了[batch_size, height, width, channels]
  • return :[batch_size, height, width, channels], 正则化后

batch_normalization

论文地址
batch_normalization, 故名思意,就是以batch为单位进行normalization
- 输入:mini_batch: In={x1,x2,..,xm}
- γ,β,需要学习的参数,都是向量
- ϵ: 一个常量
- 输出: Out={y1,y2,...,ym}
算法如下:
(1)mini_batch mean:

μIn←1m∑i=1mxi

(2)mini_batch variance

σ2In=1m∑i=1m(xi−μIn)2

(3)Normalize

x^i=xi−μInσ2In+ϵ−−−−−−√

(4)scale and shift

yi=γx^i+β

可以看出,batch_normalization之后,数据的维数没有任何变化,只是数值发生了变化
Out作为下一层的输入
函数:
tf.nn.batch_normalization()

def batch_normalization(x,
mean,
variance,
offset,
scale,
variance_epsilon,
name=None):

Args:

  • x: Input Tensor of arbitrary dimensionality.
  • mean: A mean Tensor.
  • variance: A variance Tensor.
  • offset: An offset Tensor, often denoted β in equations, or None. If present, will be added to the normalized tensor.
  • scale: A scale Tensor, often denoted γ in equations, or None. If present, the scale is applied to the normalized tensor.
  • variance_epsilon: A small float number to avoid dividing by 0.
  • name: A name for this operation (optional).
  • Returns: the normalized, scaled, offset tensor.
    对于卷积,x:[bathc,height,width,depth]
    对于卷积,我们要feature map中共享 γi 和 βi ,所以 γ,β的维度是[depth]

现在,我们需要一个函数 返回mean和variance, 看下面.

tf.nn.moments()

def moments(x, axes, shift=None, name=None, keep_dims=False):
# for simple batch normalization pass `axes=[0]` (batch only).

对于卷积的batch_normalization, x 为[batch_size, height, width, depth],axes=[0,1,2],就会输出(mean,variance), mean 与 variance 均为标量。

local_response_normalization 和 batch_normalization的更多相关文章

  1. tensorflow中的batch_normalization实现

    tensorflow中实现batch_normalization的函数主要有两个: 1)tf.nn.moments 2)tf.nn.batch_normalization tf.nn.moments主 ...

  2. Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作

    使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...

  3. 批量归一化batch_normalization

    为了解决在深度神经网络训练初期降低梯度消失/爆炸问题,Sergey loffe和Christian Szegedy提出了使用批量归一化的技术的方案,该技术包括在每一层激活函数之前在模型里加一个操作,简 ...

  4. 请问batch_normalization做了normalization后为什么要变回来?

    请问batch_normalization做了normalization后为什么要变回来? 请问batch_normalization做了normalization后为什么要变回来? - 莫驚蟄的回答 ...

  5. tensorflow 的 Batch Normalization 实现(tf.nn.moments、tf.nn.batch_normalization)

    tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, kee ...

  6. Key in_hidden/batch_normalization/beta not found in checkpoint

    可能原因:不同参数的结果保存到了同一文件夹下 解决方法:不同参数结果放在不同的checkpoints tf.train.Saver().save(sess, self.checkpoint_dir + ...

  7. CTPN项目部分代码学习

    上次拜读了CTPN论文,趁热打铁,今天就从网上找到CTPN 的tensorflow代码实现一下,这里放出大佬的github项目地址:https://github.com/eragonruan/text ...

  8. TensorFlow 神经网络相关函数

    TensorFlow 激活函数 激活操作提供用于神经网络的不同类型的非线性.这些包括平滑的非线性(sigmoid,tanh,elu,softplus,和softsign),连续的,但不是到处可微函数( ...

  9. TensorFlow NormLization

    local_response_normalization local_response_normalization出现在论文”ImageNet Classification with deep Con ...

随机推荐

  1. JS——隐式全局变量

    在函数中,var声明的是局部变量,不带var的是隐式全局变量 <script> function fn() { var a = b = c = 0;//a是局部变量,b.c是全局变量 va ...

  2. 使用 Spring Social 连接社交网络

    Spring Social 框架是spring 提供社交平台的分享组件 https://www.ibm.com/developerworks/cn/java/j-lo-spring-social/

  3. Tomcat服务器安装与第一个jsp网页程序

    1.安装tomcat服务器之前需要,先安装相应版本的jdk,个人理解Tomcat的大部分功能是使用了java的 jdk jar包的. jdk包下载方式网上可以查到 下载完后可以解压到一个指定目录,并在 ...

  4. 170925_2 Python socket 创建UDP的服务器端和客户端

    [python版本]3.6 UDP服务器端: from socket import * from time import ctime host = '' port = 21567 buf_size = ...

  5. postfix 邮件中继配置

    Postfix 配置邮件中继 A 邮件发送服务器B 邮件中继服务器 A. 配置发件服务器 # 开启转发规则 [root@Postfix ~]# vi /etc/postfix/main.cf tran ...

  6. CAD通过扩展记录实体向数据库读写用户自定义的全局数据(com接口VB语言)

    VB代码实现如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

  7. ImageMagick的下载和配置

    2. 新建一个VC++的工程,项目->属性 VC++目录中 包含目录中加入4项,ImageMagick安装路径下的include文件夹,和include里边的三个文件夹. 库目录中加入1项,Im ...

  8. IE低版本和高级浏览器对文本输入事件兼容

    1 一般 使用oninput 事件可以监控文本输入事实触发 2 兼容需要使用onpropertychange . 3 兼容写法   var evenInput=DOM元素.oninput || DOM ...

  9. codevs1231 最优布线问题

    1231 最优布线问题 题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地 ...

  10. 如何在docker和宿主机之间复制文件

    如何在docker和宿主机之间复制文件   最近在用Docker布署hadoop,要将文件上传到HDFS首先文件得在Docker容器中吧,网上提供的方法差不多有三种 1.用-v挂载主机数据卷到容器内  ...