题目描述

对于一个N个定点的凸多边形,他的任何三条对角线都不会交于一点。请求楚图形中对角线交点的个数。

例如,6边形:

输入输出格式

输入格式:

第一行一个n,代表边数。

输出格式:

第一行输出交点数量

输入输出样例

输入样例#1: 复制

3
输出样例#1: 复制

0
输入样例#2: 复制

6
输出样例#2: 复制

15

说明

50%的测试数据 3≤N≤100;

100%的测试数据 3≤N≤100000.

一道代码难度与思维难度成绝对反比的题目

首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线

而这两条对角线实质上是确定了4个顶点(也可以看做是一个四边形的两条对角线交于一点,求四边形的数量)。

因此我们只需要确定4个顶点就得到了这个唯一确定的交点。

因此我们只需要求这样4个顶点的搭配有多少个了

也就是从n个顶点中取4个出来。

根据组合数的公式,(如果你不知道组合数的公式可以这么推:第一次取可以n个点都是可以取的,第二次取的时候第一个取的点就不能取了,所以只能取(n-1)种,以此类推)

由于改变四个点的顺序不会改变对角线,因此是求的组合而不是排列,也就要除以4!,也就是24

于是我们就得到了公式: n (n-1) (n-2) * (n-3) / 24

输出用unsigned long long

#include<cstdio>
#include<iostream>
using namespace std;
main() {
unsigned long long N;
cin>>N;
cout<<N * (N - ) / * (N - ) / * (N - ) / ;
return ;
}

洛谷P2181 对角线(组合数)的更多相关文章

  1. 洛谷 - P2181 - 对角线 - 打表 - 组合数学

    https://www.luogu.org/problemnew/show/P2181 对于某条对角线,除去从两端出发的对角线,其他的都与它有1个交点. 每个点有(n-3)条对角线,每条对角线和其余C ...

  2. 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)

    洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...

  3. 【洛谷p2822】组合数问题

    (突然想          ??忘掉了wdt) (行吧那就%%%hmr) 组合数问题[传送门] (因为清明要出去培训数学知识所以一直在做数论) 组合数<=>杨辉三角形(从wz那拐来的技能 ...

  4. Solution -「Code+#4」「洛谷 P4370」组合数问题 2

    \(\mathcal{Description}\)   Link.   给定 \(n,k\),求 \(0\le b\le a\le n\) 的 \(\binom{a}{b}\) 的前 \(k\) 大. ...

  5. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  6. 【BZOJ3294/洛谷3158】[CQOI2011]放棋子(组合数+DP)

    题目: 洛谷3158 分析: 某OIer兔崽子的此题代码中的三个函数名:dfs.ddfs.dddfs(充满毒瘤的气息 显然,行与行之间.列与列之间是互相独立的.考虑背包,用\(f[k][i][j]\) ...

  7. 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)

    洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...

  8. 洛谷P1519 穿越栅栏 Overfencing

    P1519 穿越栅栏 Overfencing 69通过 275提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 USACO是100分,洛谷是20分 为什么 ...

  9. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

随机推荐

  1. java mongodb 使用MongoCollection,BasicDBObject 条件查询

    废话不说,上代码 //链接数据库 MongoClient mongoClient = new MongoClient( "172.26.xxx.xxx" , 27017 ); Mo ...

  2. Vue2 封装的 Quill 富文本编辑器组件 Vue-Quill-Editor

    1.安装 npm install vue-quill-editor --save 2.使用 import { quillEditor } from 'vue-quill-editor' 3.组件中 & ...

  3. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 网络流 + 二分 + Floyd

    Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...

  4. Python实现ATM+购物商城

    需求: 模拟实现一个ATM + 购物商城程序 额度 15000或自定义 实现购物商城,买东西加入 购物车,调用信用卡接口结账 可以提现,手续费5% 每月22号出账单,每月10号为还款日,过期未还,按欠 ...

  5. Python学习【第1篇】:环境配置

    1. 下载安装包 https://www.python.org/ftp/python/2.7.14/python-2.7.14.amd64.msi    # 2.7安装包   https://www. ...

  6. kissui.scrollanim页面滚动动画库插件

    简介 kissui.scrollanim是一款实用的纯JS和CSS3页面滚动动画库插件.通过该插件可以使元素进入浏览器视口的时候,展示指定的CSS3动画效果. 下载地址及演示 在线演示 在线下载 安装 ...

  7. 在做公司项目是时,昨天晚上还好的,但是第二天启动tomcat发现tomcat启动了,但是没把项目启动起来

    1.问题:在做公司项目是时,昨天晚上还好的,但是第二天启动tomcat发现tomcat启动了,但是没把项目启动起来 2.问题排除: 1)昨天晚上还好着呢,并且没改动代码,排除代码问题.日志中无报错信息 ...

  8. python操作JIRA的库简单操作

    因公司需要,我们开发的PRISM又需要和JIRA对接啦, 今天找了一个JIRA库撸了一发~~~ jira库地址: https://pypi.python.org/pypi/jira/1.0.3 简单操 ...

  9. Linux显示使用命令who(转)

    Linux who命令用于显示系统中有哪些使用者正在上面,显示的资料包含了使用者ID.使用的终端机.从哪边连上来的.上线时间.呆滞时间.CPU使用量.动作等等. 使用权限:所有使用者都可使用. 语法 ...

  10. windowsclient开发--为你clientsign一个签名证书

    郑重声明:该方法自娱自乐,尽管写入了签名,可是在微软系统免签证书不是合格的. 什么是签名? 话不多说,上图(没图说个xx): 微信windowsclient.exe安装文件: 再看还有一个.exe文件 ...