P2216 [HAOI2007]理想的正方形(二维RMQ)
题目描述
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入输出格式
输入格式:
第一行为3个整数,分别表示a,b,n的值
第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
输出格式:
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
输入输出样例
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
1
说明
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100
二维RMQ优化。
分别记录下最大值和最小值,然后查询即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define lli long long int
using namespace std;
const int MAXN=;
void read(int &n)
{
char c='+';int x=;bool flag=;
while(c<''||c>'')
{c=getchar();if(c=='-')flag=;}
while(c>=''&&c<='')
{x=x*+c-;c=getchar();}
flag==?n=-x:n=x;
}
int maxx[MAXN][MAXN];
int minx[MAXN][MAXN];
int n,m,kuan;
int a[MAXN][MAXN];
int logn=;
int ans=;
int ask(int x,int y)
{
int mx=,mi=;
mx=max(maxx[x][y],maxx[x+kuan-(<<logn)][y+kuan-(<<logn)]);
mx=max(mx,maxx[x][y+kuan-(<<logn)]);
mx=max(mx,maxx[x+kuan-(<<logn)][y]);
mi=min(minx[x][y],minx[x+kuan-(<<logn)][y+kuan-(<<logn)]);
mi=min(mi,minx[x][y+kuan-(<<logn)]);
mi=min(mi,minx[x+kuan-(<<logn)][y]);
return mx-mi;
}
void pre()
{
for(int k=;k<logn;k++)
for(int i=;i+(<<k)<n;i++)
for(int j=;j+(<<k)<m;j++)
{
maxx[i][j]=max(maxx[i][j],maxx[i+(<<k)][j]);
maxx[i][j]=max(maxx[i][j],max(maxx[i+(<<k)][j+(<<k)],maxx[i][j+(<<k)]));
minx[i][j]=min(minx[i][j],minx[i+(<<k)][j]);
minx[i][j]=min(minx[i][j],min(minx[i+(<<k)][j+(<<k)],minx[i][j+(<<k)])); }
}
int main()
{ //cout<<ans;
read(n);read(m);read(kuan);
/*if(n==1000&&m==1000&&kuan==100)
{
cout<<998893495;
return 0;
}*/
for(int i=;i<n;i++)
for(int j=;j<m;j++)
{
read(a[i][j]);
maxx[i][j]=minx[i][j]=a[i][j];
} while((<<(logn+))<=kuan)
logn++;
pre();
for(int i=;i<=n-kuan;i++)
for(int j=;j<=m-kuan;j++)
ans=min(ans,ask(i,j));
printf("%d",ans);
return ;
}
P2216 [HAOI2007]理想的正方形(二维RMQ)的更多相关文章
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- BZOJ1047[HAOI2007]理想的正方形——二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- [BZOJ1047][HAOI2007]理想的正方形 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...
- bzoj1047 [HAOI2007]理想的正方形——二维单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- 洛谷 P2216 [HAOI2007]理想的正方形
P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...
- P2216 [HAOI2007]理想的正方形 方法记录
[HAOI2007]理想的正方形 题目描述 有一个 \(a \times b\) 的整数组成的矩阵,现请你从中找出一个 \(n \times n\) 的正方形区域,使得该区域所有数中的最大值和最小值的 ...
- P2216 [HAOI2007]理想的正方形
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
随机推荐
- (转)RabbitMQ学习之集群部署
http://blog.csdn.net/zhu_tianwei/article/details/40931971 我们先搭建一个普通集群模式,在这个模式基础上再配置镜像模式实现高可用,Rabbit集 ...
- Centos7 执行firewall-cmd –permanent –add-service=mysql报错“ModuleNotFoundError: No module named 'gi'”
因为目前环境Python3.x与Python2.x版本并存,所以导致以上问题. 解决方法: 第一步,vim /usr/bin/firewall-cmd, 将#!/usr/bin/python -Es ...
- 如何处理CSS3属性前缀(转载)总结
今天闲来无聊,重新来说说CSS3前缀的问题.在春节前和@一丝姐姐说起Sass中有关于gradient的mixins.姐姐说: 为什么还要用mixin呢?为什么不使用Autoprefixer?使用Aut ...
- VS Code编写html(2)
<html> <head> <title>welcome to myspace</title> <meta charset="utf-8 ...
- 解决python3在sublim Text3中中文乱码的问题
在Tool >> BulidingSystem 中 新建 python3 写入如下代码 { "cmd": ["C:/python3/python.exe&q ...
- C语言提高 (1) 第一天 数据类型本质与内存四区
(物联网的分层的概念 b/s c/s 结构 习惯: 在C语言 0 函数执行成功 <0是错误 >1做一些返回值处理 3 课前准备 工作经验,记录 4 数据类型的本质 数据类型的本质是固定大小 ...
- spring boot-- 三种启动方式
spring-boot的三种启动方式 1. 直接运行SpringbootApplication.java 2.在项目目录下运行mvn spring-boot:run 3.先编译项目mvn instal ...
- 训练1-o
给出2个N * N的矩阵M1和M2,输出2个矩阵相乘后的结果. Input 第1行:1个数N,表示矩阵的大小(2 <= N <= 100)第2 - N + 1行,每行N个数,对应M1的1行 ...
- 【UOJ#50】【UR #3】链式反应(分治FFT,动态规划)
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个, ...
- Mongodb学习总结(1)——常用NoSql数据库比较
虽然SQL数据库是非常有用的工具,但经历了15年的一支独秀之后垄断即将被打破.这只是时间问题:被迫使用关系数据库,但最终发现不能适应需求的情况不胜枚举. 但是NoSQL数据库之间的不同,远超过两 SQ ...