Problem 2
Problem 2
# Problem_2.py
"""
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
四百万以下的偶数斐波那契数列之和
"""
def fibonacci(x=1, y=1, end=10000):
if x >= end:
return []
else:
return [x] + fibonacci(y, x+y, end) fib = fibonacci(end=4000000)
print(fib)
num = sum([i for i in fib if i%2==0])
print(num)
Problem 2的更多相关文章
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- PHP curl报错“Problem (2) in the Chunked-Encoded data”解决方案
$s = curl_init(); curl_setopt($s, CURLOPT_POST, true); curl_setopt($s, CURLOPT_POSTFIELDS, $queryStr ...
随机推荐
- 基于java注解实现自己的orm框架
ORM即Object Relation Mapping,Object就是对象,Relation就是关系数据库,Mapping映射,就是说Java中的对象和关系数据库中的表存在一种对应关系. 现在常见的 ...
- Java异常的捕获与处理
Java提供了try(尝试).catch(捕捉).finally(最终)这三个关键字来处理异常.在处理各种异常时,需要用到对应的异常类,指的是由程序抛出的对象所属的类. 一.异常处理的使用 由于fin ...
- POJ2689 Prime Distance 质数筛选
题目大意 求区间[L, R]中距离最大和最小的两对相邻质数.R<2^31, R-L<1e6. 总体思路 本题数据很大.求sqrt(R)的所有质数,用这些质数乘以j, j+1, j+2... ...
- Linux - Nginx配置反向代理。
Nginx配置反向代理. 准备两台服务器 http://192.168.70.66 http://192.168.70.62 设置正则匹配(192.168.70.66) vim /usr/local/ ...
- [BZOJ 2100] Apple Delivery
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2100 [算法] Answer = min{ dist(PB,PA1) + dist( ...
- netcore发布到centos 验证码Zkweb.system.drawing不显示及乱码的问题
netcore发布到centos 使用的是Zkweb.system.drawing生成验证码,发布后可能会出现不显示及乱码的情况 1.验证码图片不显示(通过日志会发现生成图片时代码已经异常) Zkwe ...
- SQL server存储过程学习
由于之前使用 Linq to Sql来操作数据库,对于数据库的存储过程.函数等比较薄弱.乘着自己闲着的时候,就百度自学了一点存储过程,以防以后要用. 基础通俗易懂的存储过程通过 存储过程学习 ,然后自 ...
- Super超级ERP系统---(4)采购管理--采购单创建
Erp系统中采购是系统必不可少的一部分,也就是ERP种的进货模块,超级ERP系统中的采购模块选选择采购供应商,然后选择进货商品的数量和采购价格,创建采购进货单 1.创建采购单 2.审核采购单 采购单创 ...
- 异步lambda表达式
- hiho一下 第173周
题目1 : A Game 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi and Little Ho are playing a game. Ther ...