使用LeNet训练自己的手写图片数据
一、前言
本文主要尝试将自己的数据集制作成lmdb格式,送进lenet作训练和测试,参考了http://blog.csdn.net/liuweizj12/article/details/52149743和http://blog.csdn.net/xiaoxiao_huitailang/article/details/51361036这两篇博文
二、从训练模型到使用模型预测图片分类
(1)自己准备的图像数据
由于主要是使用lenet模型训练自己的图片数据,我的图像数据共有10个类别,分别是0~9,相应地保存在名为0~9的文件夹,在/homg/您的用户名/下新建一文件夹char_images,用于保存图像数据,在/homg/您的用户名/char_images/下新建两个文件夹,名字分别为train和val,各自都包含了名为0~9的文件夹,例如文件夹0内存放的是字符”0”的图像,我的文件夹 如下:
(2)对图像数据作统一缩放至28*28,并生成txt标签
为了计算均值文件,需要将所有图片缩放至统一的尺寸,在train和val文件夹所在路径下创建python文件,命名getPath.py,并写入以下内容:
- #coding:utf-8
- import cv2
- import os
- def IsSubString( SubStrList , Str): #判断SubStrList的元素
- flag = True #是否在Str内
- for substr in SubStrList:
- if not ( substr in Str):
- flag = False
- return flag
- def GetFileList(FindPath,FlagStr=[]): #搜索目录下的子文件路径
- FileList=[]
- FileNames=os.listdir(FindPath)
- if len(FileNames)>0:
- for fn in FileNames:
- if len(FlagStr)>0:
- if IsSubString(FlagStr,fn): #不明白这里判断是为了啥
- fullfilename=os.path.join(FindPath,fn)
- FileList.append(fullfilename)
- else:
- fullfilename=os.path.join(FindPath,fn)
- FileList.append(fullfilename)
- if len(FileList)>0:
- FileList.sort()
- return FileList
- train_txt = open('train.txt' , 'w') #制作标签数据
- classList =['0','1','2','3','4','5','6','7','8','9']
- for idx in range(len(classList)) :
- imgfile=GetFileList('train/'+ classList[idx])#将数据集放在与.py文件相同目录下
- for img in imgfile:
- srcImg = cv2.imread( img);
- resizedImg = cv2.resize(srcImg , (28,28))
- cv2.imwrite( img ,resizedImg)
- strTemp=img+' '+classList[idx]+'\n' #用空格代替转义字符 \t
- train_txt.writelines(strTemp)
- train_txt.close()
- test_txt = open('val.txt' , 'w') #制作标签数据
- for idx in range(len(classList)) :
- imgfile=GetFileList('val/'+ classList[idx])
- for img in imgfile:
- srcImg = cv2.imread( img);
- resizedImg = cv2.resize(srcImg , (28,28))
- cv2.imwrite( img ,resizedImg)
- strTemp=img+' '+classList[idx]+'\n' #用空格代替转义字符 \t
- test_txt.writelines(strTemp)
- test_txt.close()
- print("成功生成文件列表")
运行该py文件,可将所有图片缩放至28*28大小,并且在rain和val文件夹所在路径下生成训练和测试图像数据的标签txt文件,文件内容为:
(3)生成lmdb格式的数据集
首先于caffe路径下新建一文件夹My_File,并在My_File下新建两个文件夹Build_lmdb和Data_label,将(2)中生成文本文件train.txt和val.txt搬至Data_label下
将caffe路径下 examples/imagenet/create_imagenet.sh 复制一份到Build_lmdb文件夹下
打开create_imagenet.sh ,修改内容如下:
- #!/usr/bin/env sh
- # Create the imagenet lmdb inputs
- # N.B. set the path to the imagenet train + val data dirs
- set -e
- EXAMPLE=My_File/Build_lmdb #生成的lmdb格式数据保存地址
- DATA=My_File/Data_label #两个txt标签文件所在路径
- TOOLS=build/tools #caffe自带工具,不用管
- TRAIN_DATA_ROOT=/home/zjy/char_images/ #预先准备的训练图片路径,该路径和train.txt上写的路径合起来是图片完整路径
- VAL_DATA_ROOT=/home/zjy/char_images/ #预先准备的测试图片路径,...
- # Set RESIZE=true to resize the images to 256x256. Leave as false if images have
- # already been resized using another tool.
- RESIZE=false
- if $RESIZE; then
- RESIZE_HEIGHT=28
- RESIZE_WIDTH=28
- else
- RESIZE_HEIGHT=0
- RESIZE_WIDTH=0
- fi
- if [ ! -d "$TRAIN_DATA_ROOT" ]; then
- echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
- echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
- "where the ImageNet training data is stored."
- exit 1
- fi
- if [ ! -d "$VAL_DATA_ROOT" ]; then
- echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
- echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
- "where the ImageNet validation data is stored."
- exit 1
- fi
- echo "Creating train lmdb..."
- GLOG_logtostderr=1 $TOOLS/convert_imageset \
- --resize_height=$RESIZE_HEIGHT \
- --resize_width=$RESIZE_WIDTH \
- --shuffle \
- --gray \ #灰度图像加上这个
- $TRAIN_DATA_ROOT \
- $DATA/train.txt \
- $EXAMPLE/train_lmdb #生成的lmdb格式训练数据集所在的文件夹
- echo "Creating val lmdb..."
- GLOG_logtostderr=1 $TOOLS/convert_imageset \
- --resize_height=$RESIZE_HEIGHT \
- --resize_width=$RESIZE_WIDTH \
- --shuffle \
- --gray \ #灰度图像加上这个
- $VAL_DATA_ROOT \
- $DATA/val.txt \
- $EXAMPLE/val_lmdb #生成的lmdb格式训练数据集所在的文件夹
- echo "Done."
以上只是为了说明修改的地方才添加汉字注释,实际时sh文件不要出现汉字,运行该sh文件,可在Build_lmdb文件夹内生成2个文件夹train_lmdb和val_lmdb,里面各有2个lmdb格式的文件
(4)更改lenet_solver.prototxt和lenet_train_test.prototxt
将caffe/examples/mnist下的 train_lenet.sh 、lenet_solver.prototxt 、lenet_train_test.prototxt 这三个文件复制至 My_File,首先修改train_lenet.sh 如下,只改了solver.prototxt的路径
- #!/usr/bin/env sh
- set -e
- ./build/tools/caffe train --solver=My_File/lenet_solver.prototxt $@ #改路径
然后再更改lenet_solver.prototxt,如下:
- # The train/test net protocol buffer definition
- net: "My_File/lenet_train_test.prototxt" #改这里
- # test_iter specifies how many forward passes the test should carry out.
- # In the case of MNIST, we have test batch size 100 and 100 test iterations,
- # covering the full 10,000 testing images.
- test_iter: 100
- # Carry out testing every 500 training iterations.
- test_interval: 500
- # The base learning rate, momentum and the weight decay of the network.
- base_lr: 0.01
- momentum: 0.9
- weight_decay: 0.0005
- # The learning rate policy
- lr_policy: "inv"
- gamma: 0.0001
- power: 0.75
- # Display every 100 iterations
- display: 100
- # The maximum number of iterations
- max_iter: 10000
- # snapshot intermediate results
- snapshot: 5000
- snapshot_prefix: "My_File/" #改这里
- # solver mode: CPU or GPU
- solver_mode: GPU
最后修改lenet_train_test.prototxt ,如下:
- name: "LeNet"
- layer {
- name: "mnist"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TRAIN
- }
- transform_param {
- scale: 0.00390625
- }
- data_param {
- source: "My_File/Build_lmdb/train_lmdb" #改成自己的
- batch_size: 64
- backend: LMDB
- }
- }
- layer {
- name: "mnist"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TEST
- }
- transform_param {
- scale: 0.00390625
- }
- data_param {
- source: "My_File/Build_lmdb/val_lmdb" #改成自己的
- batch_size: 100
- backend: LMDB
- }
- }
- layer {
- name: "conv1"
- type: "Convolution"
- bottom: "data"
- top: "conv1"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- convolution_param {
- num_output: 20
- kernel_size: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "pool1"
- type: "Pooling"
- bottom: "conv1"
- top: "pool1"
- pooling_param {
- pool: MAX
- kernel_size: 2
- stride: 2
- }
- }
- layer {
- name: "conv2"
- type: "Convolution"
- bottom: "pool1"
- top: "conv2"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- convolution_param {
- num_output: 50
- kernel_size: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "pool2"
- type: "Pooling"
- bottom: "conv2"
- top: "pool2"
- pooling_param {
- pool: MAX
- kernel_size: 2
- stride: 2
- }
- }
- layer {
- name: "ip1"
- type: "InnerProduct"
- bottom: "pool2"
- top: "ip1"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- inner_product_param {
- num_output: 500
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "relu1"
- type: "ReLU"
- bottom: "ip1"
- top: "ip1"
- }
- layer {
- name: "ip2"
- type: "InnerProduct"
- bottom: "ip1"
- top: "ip2"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- inner_product_param {
- num_output: 10
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "accuracy"
- type: "Accuracy"
- bottom: "ip2"
- bottom: "label"
- top: "accuracy"
- include {
- phase: TEST
- }
- }
- layer {
- name: "loss"
- type: "SoftmaxWithLoss"
- bottom: "ip2"
- bottom: "label"
- top: "loss"
- }
运行 My_File/train_lenet.sh ,得到最后的训练结果,在My_File下生成训练的caffemodel和solverstate。
(5)生成均值文件
均值文件主要用于图像预测的时候,由caffe/build/tools/compute_image_mean生成,在My_File文件夹下新建一文件夹Mean,用于存放均值文件,在caffe/下执行:
build/tools/compute_image_mean My_File/Build_lmdb/train_lmdb My_File/Mean/mean.binaryproto
可在My_File/Mean/下生成均值文件mean.binaryproto
(6)生成deploy.prototxt
deploy.prototxt是在lenet_train_test.prototxt的基础上删除了开头的Train和Test部分以及结尾的Accuracy、SoftmaxWithLoss层,并在开始时增加了一个data层描述,结尾增加softmax层,可以参照博文http://blog.csdn.net/lanxuecc/article/details/52474476 使用python生成,也可以直接由train_val.prototxt上做修改,在My_File文件夹下新建一文件夹Deploy,将 lenet_train_test.prototxt复制至文件夹Deploy下,并重命名为deploy.prototxt ,修改里面的内容如下:
- name: "LeNet"
- layer { #删去原来的Train和Test部分,增加一个data层
- name: "data"
- type: "Input"
- top: "data"
- input_param { shape: { dim: 1 dim: 1 dim: 28 dim: 28 } }
- }
- layer {
- name: "conv1"
- type: "Convolution"
- bottom: "data"
- top: "conv1"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- convolution_param {
- num_output: 20
- kernel_size: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "pool1"
- type: "Pooling"
- bottom: "conv1"
- top: "pool1"
- pooling_param {
- pool: MAX
- kernel_size: 2
- stride: 2
- }
- }
- layer {
- name: "conv2"
- type: "Convolution"
- bottom: "pool1"
- top: "conv2"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- convolution_param {
- num_output: 50
- kernel_size: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "pool2"
- type: "Pooling"
- bottom: "conv2"
- top: "pool2"
- pooling_param {
- pool: MAX
- kernel_size: 2
- stride: 2
- }
- }
- layer {
- name: "ip1"
- type: "InnerProduct"
- bottom: "pool2"
- top: "ip1"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- inner_product_param {
- num_output: 500
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer {
- name: "relu1"
- type: "ReLU"
- bottom: "ip1"
- top: "ip1"
- }
- layer {
- name: "ip2"
- type: "InnerProduct"
- bottom: "ip1"
- top: "ip2"
- param {
- lr_mult: 1
- }
- param {
- lr_mult: 2
- }
- inner_product_param {
- num_output: 10
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- }
- layer { #增加softmax层
- name: "prob"
- type: "Softmax"
- bottom: "ip2"
- top: "prob"
- }
(7)预测图片
在My_File文件夹下创建一文件夹Pic,用于存放测试的图片;在My_File文件夹下创建另一文件夹Synset,在其中新建synset_words.txt文件,之后在里面输入:
0
1
2
3
4
5
6
7
8
9
看看My_File文件夹都有啥了
最后使用caffe/build/examples/cpp_classification/classification.bin对图片作预测,在终端输入:
三、结束语
真是篇又臭又长的博文,高手自行忽略,刚刚入门的可以看看!
使用LeNet训练自己的手写图片数据的更多相关文章
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:将MNIST手写图片数据写入TFRecord文件
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...
- 07 训练Tensorflow识别手写数字
打开Python Shell,输入以下代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input ...
- 人工智能-深度学习(3)TensorFlow 实战一:手写图片识别
http://gitbook.cn/gitchat/column/59f7e38160c9361563ebea95/topic/59f7e86d60c9361563ebeee5 wiki.jikexu ...
- Pytorch1.0入门实战一:LeNet神经网络实现 MNIST手写数字识别
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表 ...
- pytorch: 准备、训练和测试自己的图片数据
大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试.如果我们是自己的图片数据,又该怎么做呢? 一.我的数据 我在学习的时候,使用的是fashion-mnist.这个 ...
- javaScript 手写图片轮播
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- js手写图片查看器(图片的缩放、旋转、拖拽)
在做一次代码编辑任务中,要查看图片器.在时间允许的条件下,放弃了已经封装好的图片jq插件,现在自己手写js实现图片的缩放.旋转.推拽功能! 具体代码如下: <!DOCTYPE html> ...
- SVM:利用SVM算法实现手写图片识别(数据集50000张图片)—Jason niu
import mnist_loader # Third-party libraries from sklearn import svm def svm_baseline(): training_dat ...
随机推荐
- Thread interrupt表示什么
Thread interrupt表示什么 学习了:https://www.zhihu.com/question/41048032?sort=created 学习了:http://blog.csdn.n ...
- [Cypress] Test React’s Controlled Input with Cypress Selector Playground
React based applications often use controlled inputs, meaning the input event leads to the applicati ...
- Tomcat启动时载入某个servlet
当我们做一个java项目时,有几个功能都须要载入servlet或者实现某个共同的方法,尽管我们一味地在每个功能中依次载入也不是不能够,可是当某个servlet 或者方法被频繁地载入和应用.我们将面向对 ...
- CentOS 7通过yum安装fcitx五笔输入法
CentOS 7通过yum安装fcitx五笔输入法 下面通过了亲測: 1.设置源 Posted in Linux at 三月 5th, 2015 / No Comments ? 增加EPEL源 EPE ...
- runtime objc_msgSend
runtime objc_msgSend 字数1781 阅读245 评论2 喜欢7 前言 想要通过runtime发送消息,就必须要掌握runtime如何发送消息,是调用哪个函数?又是如何调用的?本篇 ...
- EularProject 36:2进制和10进制回文数
华电北风吹 天津大学认知计算与应用重点实验室 完毕日期:2015/7/29 Double-base palindromes Problem 36 The decimal number, 585 = 1 ...
- 【POJ 2976】 Dropping Tests
[题目链接] http://poj.org/problem?id=2976 [算法] 0/1分数规划 [代码] #include <algorithm> #include <bits ...
- springsecurity+jwt实践和学习
1.参考资料: https://blog.csdn.net/qq924862077/article/details/83038031 https://blog.csdn.net/sxdtzhaoxin ...
- 如何用PYTHON代码写出音乐
什么是MIDI 博主本人虽然五音不全,而且唱歌还很难听,但是还是非常喜欢听歌的.我一直在做这样的尝试,就是通过人工智能算法实现机器自动的作词和编曲(在这里预告下,通过深度学习写歌词已经实现了,之后会分 ...
- 算法 之 3n+1问题
卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数 ...