Description

在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: 
Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆。 
现在,请你帮忙计算一下,先把第 i 个炸弹引爆,将引爆多少个炸弹呢? 

Input

第一行,一个数字 N,表示炸弹个数。 
第 2∼N+1行,每行 2 个数字,表示 Xi,Ri,保证 Xi 严格递增。 
N≤500000
−10^18≤Xi≤10^18
0≤Ri≤2×10^18

Output

一个数字,表示Sigma(i*炸弹i能引爆的炸弹个数),1<=i<=N mod10^9+7。

题解

因为每一个炸弹爆炸后引爆的是一个区间的炸弹,所以想到线段树优化建图。

然后可能有环所以跑Tarjan求强连通分量。最后拓扑合并答案。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int N=;
const int mod=1e9+;
queue<int> q;
int cnt,cnt1,head[N*],head1[N*];
int num,id[N*],di[N*];
int dfn[N*],low[N*],tot1,top,stack[N*],book[N*],num1,col[N*],tmp;
long long a[N],r[N],b[N],maxx[N*],minn[N*];
int n,tot,in[N*];
long long ans;
struct tree{
int l,r;
}tr[N*];
struct edge{
int to,nxt,u;
}e[N*],e1[N*];
void add(int u,int v){
cnt++;
e[cnt].nxt=head[u];
e[cnt].u=u;
e[cnt].to=v;
head[u]=cnt;
}
void add1(int u,int v){
cnt1++;
e1[cnt1].nxt=head1[u];
e1[cnt1].to=v;
head1[u]=cnt1;
}
void build(int l,int r,int now){
num=max(num,now);
tr[now].l=l;tr[now].r=r;
if(r==l){
id[l]=now;
di[now]=l;
return;
}
int mid=(tr[now].l+tr[now].r)>>;
build(l,mid,now*);
build(mid+,r,now*+);
add(now,now*);
add(now,now*+);
}
void update(int l,int r,int now,int u){
if(tr[now].l==l&&tr[now].r==r){
add(u,now);
return;
}
int mid=(tr[now].l+tr[now].r)>>;
if(l>mid)update(l,r,now*+,u);
else if(r<=mid)update(l,r,now*,u);
else{
update(l,mid,now*,u);
update(mid+,r,now*+,u);
}
}
void Tarjan(int u){
dfn[u]=low[u]=++tot1;
stack[++top]=u;
book[u]=;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(dfn[v]==){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(book[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
int x;
num1++;
minn[num1]=4e18;
maxx[num1]=-4e18;
bool flag=false;
do{
x=stack[top--];
book[x]=;
col[x]=num1;
if(di[x]){
if(!flag){
minn[num1]=a[di[x]]-r[di[x]];
maxx[num1]=a[di[x]]+r[di[x]];
flag=true;
}
else{
minn[num1]=min(minn[num1],a[di[x]]-r[di[x]]);
maxx[num1]=max(maxx[num1],a[di[x]]+r[di[x]]);
}
}
}while(x!=u);
}
}
int lower(long long x){
int ll=;int rr=tot+;
while(ll<=rr){
int mid=(ll+rr)>>;
if(b[mid]>=x){
tmp=mid;
rr=mid-;
}
else ll=mid+;
}
return tmp;
}
int uppr(long long x){
int ll=;int rr=tot+;
while(ll<=rr){
int mid=(ll+rr)>>;
if(b[mid]>x){
tmp=mid;
rr=mid-;
}
else ll=mid+;
}
return tmp;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld%lld",&a[i],&r[i]);
b[i]=a[i];
}
tot=unique(b+,b++n)-(b+);
b[tot+]=4e18;
build(,n,);
for(int i=;i<=n;i++){
int x=lower(a[i]-r[i]);
int y=uppr(a[i]+r[i])-;
update(x,y,,id[i]);
}
for(int i=;i<=num;i++){
if(!dfn[i])Tarjan(i);
}
for(int i=;i<=cnt;i++){
if(col[e[i].u]==col[e[i].to])continue;
add1(col[e[i].to],col[e[i].u]);
in[col[e[i].u]]++;
}
for(int i=;i<=num1;i++){
if(in[i]==)q.push(i);
}
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head1[u];i;i=e1[i].nxt){
int v=e1[i].to;
in[v]--;
if(in[v]==)q.push(v);
minn[v]=min(minn[v],minn[u]);
maxx[v]=max(maxx[v],maxx[u]);
}
}
for(int i=;i<=n;i++){
int x=uppr(maxx[col[id[i]]])-;
int y=lower(minn[col[id[i]]]);
ans+=(long long)((long long)(x-y+)*(long long)i)%mod;
ans%=mod;
}
printf("%lld",ans);
return ;
}

BZOJ5017 炸弹(线段树优化建图+Tarjan+拓扑)的更多相关文章

  1. bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)

    直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...

  2. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  3. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  4. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

  5. 『炸弹 线段树优化建图 Tarjan』

    炸弹(SNOI2017) Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸 时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi ...

  6. 模拟赛T2 线段树优化建图+tarjan+拓扑排序

    然而这只是 70pts 的部分分,考场上没想到满分怎么做(现在也不会) code: #include <cstdio> #include <string> #include & ...

  7. 炸弹:线段树优化建边+tarjan缩点+建反边+跑拓扑

    这道题我做了有半个月了...终于A了... 有图为证 一句话题解:二分LR线段树优化建边+tarjan缩点+建反边+跑拓扑统计答案 首先我们根据题意,判断出来要炸弹可以连着炸,就是这个炸弹能炸到的可以 ...

  8. 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)

    题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...

  9. [SNOI2017]炸弹[线段树优化建图]

    [SNOI2017]炸弹 线段树优化建图,然后跑一边tarjan把点全部缩起来,炸一次肯定是有连锁反应的所以整个连通块都一样-于是就可以发现有些是只有单向边的不能忘记更新,没了. #include & ...

随机推荐

  1. QT笔记 -- (6) opengl

    参考 http://blog.csdn.net/myths_0/article/details/24431597 用glut绘制一个茶壶 一句话,继承QGLWidget,实现下面三个函数,用子类定义窗 ...

  2. ZOJ 2883 Shopaholic【贪心】

    解题思路:给出n件物品,每买三件,折扣为这三件里面最便宜的那一件即将n件物品的价值按降序排序,依次选择a[3],a[6],a[9]----a[3*k] Shopaholic Time Limit: 2 ...

  3. rman备份工具简介

    RMAN工具简介: 备份的文件: 数据文件 归档日志 控制文件(当前控制文件) spfile 自动管理备份相关元数据 文件名称 完成备份的scn 以数据块为单位,只备份使用过的数据块(物理层面判断是否 ...

  4. tigergao

    互联网从业 6 年.前码农&DBA,现运维&电商创业者,也在做自媒体.终生学习者. 运营微信公众号:高哥咋么看 感兴趣的朋友们可以订阅.

  5. Spring MVC 搭建过程中web.xml配置引入文件的路径问题

    为啥要说一下这么low的问题,因为我是一个比较low的人,哈哈.本来我技术有限,没事干自己撘个环境找找乐趣,结果被各种基础问题,弄的一脸蒙蔽.算了不多说,直接说问题. 1.首先说一下java编译后的文 ...

  6. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  7. JVM内存管理简单剖析

    Java是一个跨平台语言,屏蔽操作系统的差异,无需关心复杂内存管理,做到编写一次到处运行.其强大的能力源于Java Virtual Machine (虚拟机)默默的付出.代码运行在虚拟机之上,虚拟机运 ...

  8. Adobe AIR and Flex - 保存序列化对象文件(译)

    创建任何桌面应用程序几乎总是需要在本地存储数据,通过Adobe AIR我们有几下面几个选择,一个是我们能够使用内置的 SQLite 数据库支持,对于少量的数据这是大材小用了.另外一个选择是我们通过把数 ...

  9. 2015,鬼王Xun和GGL比赛,带给我们无尽的欢乐

    一如既往的风格,正文之前,先扯蛋~     这篇文章好久就想写了,一直没有动笔,最近在忙于Android和iOS等技术研究,又忙于金融投资等方面的学习和写作.这个周末,把技术进度延缓了点,把很多闲杂的 ...

  10. 通过force index了解的MySQL查询的性能优化

    查询是数据库技术中最常用的操作.查询操作的过程比较简单,首先从客户端发出查询的SQL语句,数据库服务端在接收到由客户端发来的SQL语句后, 执行这条SQL语句,然后将查询到的结果返回给客户端.虽然过程 ...