【题目链接】

http://poj.org/problem?id=1830

【算法】

列出异或方程组,用高斯消元求解

【代码】

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std; int i,j,k,T,n,x,y,ans;
int a[]; int main()
{ scanf("%d",&T);
while (T--)
{
scanf("%d",&n);
for (i = ; i <= n; i++) scanf("%d",&a[i]);
for (i = ; i <= n; i++)
{
scanf("%d",&x);
a[i] ^= x;
a[i] |= ( << i);
}
while (scanf("%d%d",&x,&y) && x && y) a[y] |= ( << x);
ans = ;
for (i = ; i <= n; i++)
{
for (j = i + ; j <= n; j++)
{
if (a[j] > a[i])
swap(a[i],a[j]);
}
if (a[i] == )
{
ans = << (n - i + );
break;
}
if (a[i] == )
{
ans = ;
break;
}
for (k = n; k; k--)
{
if (a[i] & ( << k))
{
for (j = ; j <= n; j++)
{
if (i != j && (a[j] & ( << k)))
a[j] ^= a[i];
}
break;
}
}
}
if (!ans) printf("Oh,it's impossible~!!\n");
else printf("%d\n",ans);
} return ; }

【POJ 1830】 开关问题的更多相关文章

  1. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  2. POJ 1830 开关问题 【01矩阵 高斯消元】

    任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...

  3. POJ 1830 开关问题(高斯消元求解的情况)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8714   Accepted: 3424 Description ...

  4. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  5. poj 1830 开关问题

    开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...

  6. POJ 1830 开关问题(Gauss 消元)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description ...

  7. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  8. POJ 1830.开关问题(高斯消元)

    题目链接 Solutin: 将每个开关使用的情况当成未知数,如果开关i能影响到开关j,那么系数矩阵A[j][i]的系数为1. 每个开关增广矩阵的值是开关k的初状态异或开关k的目标状态,这个应该很容易想 ...

  9. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  10. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

随机推荐

  1. Android几种常见的多渠道(批量)打包方式介绍

    多渠道打包,主要是为了统计不同的渠道上包的下载数量,渠道越多,我们需要打的包数量越多,这个时候,我们没法去使用单纯的手动打包去一个一个的生成不同的渠道包,我们需要更高效的打包方式. 声明渠道方式一: ...

  2. 安卓学习之学生签到APP(一)

    一.学生定位签到页面 具体实现步骤: 1.1 高德地图申请key 1.创建新应用 进入高德地图api控制台,创建一个新应用.如果您之前已经创建过应用,可直接跳过这个步骤. 2.添加新Key 在创建的应 ...

  3. 关于MVC4.0版本以上的RegisterBundles用法

    public class BundleConfig { //新建了一个项目文件,打开App_Start下的BundleConfig看看, public static void RegisterBund ...

  4. shiro登陆权限验证

    一>引入shirojar包 <!-- shiro登陆权限控制 -->        <dependency>            <groupId>org. ...

  5. C# Socket通讯 本机多网卡,指定网卡通讯

    IPAddress ip = IPAddress.Parse("192.168.0.188"); IPAddress IPLocal = IPAddress.Parse(" ...

  6. python2打印list中文内容防乱码

    zh_ls = ['人','民'] print str(zh_ls).decode("string_escape")

  7. dubbo之集群容错

    在集群调用失败时,Dubbo 提供了多种容错方案,缺省为 failover 重试. 集群容错模式 1. Failover Cluster 失败自动切换,当出现失败,重试其它服务器 .通常用于读操作,但 ...

  8. 时序分析:ARIMA模型(非平稳时间序列)

    转载于一篇硕士论文.... ARIMA模型意为求和自回归滑动平均模型(IntergratedAut少regressive MovingAverageModel),简记为ARIMA(p,d,q),p,q ...

  9. 解决JavaOpenCV的内存问题

    在使用OpenCV时,程序总是在某个时间墨明棋妙地终止,打开CygWin ,输入 adb logcat ,查看打印的信息,发现是内存问题.经过反复的查找,发现使用OpenCV的java类库时,一定要慎 ...

  10. React Native未来导航者:react-navigation 使用详解

    该库包含三类组件: (1)StackNavigator:用来跳转页面和传递参数 (2)TabNavigator:类似底部导航栏,用来在同一屏幕下切换不同界面 (3)DrawerNavigator:侧滑 ...