[BZOJ1975]HH去散步 图论+矩阵
[BZOJ1975]HH去散步 图论+矩阵
题目大意
要求出在一个m条边,n个点的图中,相邻两次走的边不能相同,求在t时间时从起点A走到终点B的路径方案总数。将答案mod45989
输入格式:
第一行:五个整数N,M,t,A,B。
后面的m行,每行有两个数\(a_i\) \(b_i\),表示路口\(a_i\) \(b_i\)有有一条边。
输出格式:
一个整数,表示答案。
输入输出样例
input
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
output
4
Hint
对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。 对于100%的数据,N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B
解题分析
题目问你路径的方案总数,首先就想到要用矩阵+floyd的算法来求。
我们根据floyd的原理可以知道\(L[i][j]=\sum\limits_{k=1}^{n}L[i][k]*L[k][j]\)
所以我们可以建立一个矩阵 \(g[i][j]\)代表有一条从i到j的比。将这个矩阵幂t次,\(g[i][j]\)就代表i到j的走t条边的方案数。
因为这一题相邻两次走的边不能相同,所以我们就将边变成点来求方案数。
那么怎么统计答案呢?我们可以有一个转移矩阵2m2m,其中\(f[i][j]\)代表第i条边(原图中)的起点与第j条边(原图中)是一个点(且ij不能是同一条边),就代表点(新图)i与点(新图)j是相连的。答案矩阵是一个12m的矩阵,\(ans[1][i]\)代表第i(原图)条边的终点为题目给的A.把ans与自乘t次的F矩阵相乘。然后
$$\sum ans[1][i](i代表终点为B的点(原图的边))$$就是答案。
其实我们可以理解为,ans就是加了一个虚点,代表着一个与所有起点为A的点(原图中的边)相连的点。乘后的ans代表这个虚点到所以点的方案。我们只要统计终点为B的点的方案数就可以了。
代码自带大常数==!
#include <stdio.h>
#include <iostream>
#include <cmath>
#include <queue>
#include <algorithm>
#include <cstring>
#include <climits>
#include <cstdlib>
#define MAXN (60+10)*2
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std;
int mod=45989,n,m,a,b,t,num,head[MAXN],tot,tail[MAXN],M;
struct Edge{
int next,to,from,next1;
}edge[MAXN<<1];
void add(int from,int to)
{
edge[++num].next=head[from];
edge[num].next1=tail[to];
edge[num].to=to;
edge[num].from=from;
head[from]=num;
tail[to]=num;
}
struct matrix{
int n,m;
int data[MAXN][MAXN];
void print()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
printf("%d ",data[i][j]);
printf("\n");
}
}
matrix operator * (matrix b)
{
matrix ans;
memset(ans.data,0,sizeof(ans.data));
ans.n=n;ans.m=b.m;
for(int i=1;i<=ans.n;i++)
for(int j=1;j<=ans.m;j++)
for(int k=1;k<=ans.m;k++)
ans.data[i][j]+=(data[i][k]*b.data[k][j])%mod,ans.data[i][j]%=mod;
return ans;
}
void too(matrix b)
{
n=b.n;m=b.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
data[i][j]=b.data[i][j];
}
}f,ans,zero,pf;
void power(int k)
{
if(k==1) pf=f;
else
{
power(k/2);
if(k%2==1) pf=pf*pf,pf=pf*f;
else pf=pf*pf;
}
}
int main()
{
scanf("%d%d%d%d%d",&n,&m,&t,&a,&b);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
f.n=f.m=2*m;ans.n=1;ans.m=2*m;M=2*m;
for(int i=head[a];i;i=edge[i].next) ans.data[1][i]=1;
for(int s=0;s<n;s++)
for(int i=head[s];i;i=edge[i].next)
for(int j=head[edge[i].to];j;j=edge[j].next)
if((i+1)!=((j+1)^1))
{
f.data[i][j]++;
}
power(t-1);ans=ans*pf;
for(int i=tail[b];i;i=edge[i].next1)
tot=(tot+ans.data[1][i])%mod;
printf("%d\n",tot);
return 0;
}
[BZOJ1975]HH去散步 图论+矩阵的更多相关文章
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
- 【SDOI2009】HH去散步(矩阵快速幂)
题面 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是 ...
- 1875. [SDOI2009]HH去散步【矩阵乘法】
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...
- [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】
题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...
- BZOJ 1875: [SDOI2009]HH去散步(矩阵乘法)
首先,题意就把我们引向了矩阵乘法,注意边长m<=60,那么就按边建图,变成一个120个点的图,然后乱搞就行了。 PS:WA了N久改了3次终于A了QAQ CODE: #include<cst ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- [SDOI2009]HH去散步 「矩阵乘法计数」
计数问题也许可以转化为矩阵乘法形式 比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可 故 矩阵乘法计数 对于计数问题,若可以将 \(n\) 个点表示成 \(n \ti ...
随机推荐
- Java 学习(9):java Stream & File & IO
Java 流(Stream).文件(File)和IO Java.io 包几乎包含了所有操作输入.输出需要的类.所有这些流类代表了输入源和输出目标. Java.io 包中的流支持很多种格式,比如:基本类 ...
- ASP.NET - 单元测试
Assert类的使用 Assert.Inconclusive() 表示一个未验证的测试: Assert.AreEqual() 测试指定的值是否相等,如果相等,则测试通过: AreSame() 用于验证 ...
- CF909B Segments
CF909B Segments 题意翻译 题目描述 给你一个整数N.考虑坐标轴上所有可能的部分,在整数点上的端点,坐标在0到N之间,包括它们. 您希望在几个层中绘制这些片段,这样在每个层中这些片段就不 ...
- redis代码解析-事务
redis 的事务相关的几个命令分别为 watch multi exec. watch 可以监控一个变量在事务开始执行之前是否有被修改.使用方式为: WATCH key [key ...] 在redi ...
- rails new app的时候设置skip-bundle
rails new app的时候设置skip-bundle rails new app --skip-bundle 这样可以越过bundle install阶段:
- Android开发之——编码规范
1. 前言 这份文档参考了 Google Java 编程风格规范和 Google 官方 Android 编码风格规范.该文档仅供参考,只要形成一个统一的风格,见量知其意就可. 2. 源文件基础 2.1 ...
- lua 中string字符串的使用(string.len, string.char)
table.keys 返回指定表格中的全部键. 格式: keys = table.keys(表格对象) 使用方法演示样例: local t = {a = 1, b = 2, c = 3} local ...
- RecyclerView的点击事件
RecyclerView 一.简单介绍 这个是谷歌官方出的控件.使我们能够很easy的做出列表装的一个控件,当然recyclerview的功能不止这些,它还能够做出瀑布流的效果,这是一个很强大的控件, ...
- MongoDB初探系列之四:MongoDB与Java共舞
因为版本号不同,可能API也有所不同.本次学习用的是3.0版本号. 1.使用的mongodb的jdbc驱动版本号为:mongo-java-driver-3.0.0.jar 2.本节仅仅是简介JDBC操 ...
- 利用Spring Hibernate注解packagesToScan的简化自动扫描方式
转自:https://blog.csdn.net/wzygis/article/details/28256045