[BZOJ1975]HH去散步 图论+矩阵
[BZOJ1975]HH去散步 图论+矩阵
题目大意
要求出在一个m条边,n个点的图中,相邻两次走的边不能相同,求在t时间时从起点A走到终点B的路径方案总数。将答案mod45989
输入格式:
第一行:五个整数N,M,t,A,B。
后面的m行,每行有两个数\(a_i\) \(b_i\),表示路口\(a_i\) \(b_i\)有有一条边。
输出格式:
一个整数,表示答案。
输入输出样例
input
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
output
4
Hint
对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。 对于100%的数据,N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B
解题分析
题目问你路径的方案总数,首先就想到要用矩阵+floyd的算法来求。
我们根据floyd的原理可以知道\(L[i][j]=\sum\limits_{k=1}^{n}L[i][k]*L[k][j]\)
所以我们可以建立一个矩阵 \(g[i][j]\)代表有一条从i到j的比。将这个矩阵幂t次,\(g[i][j]\)就代表i到j的走t条边的方案数。
因为这一题相邻两次走的边不能相同,所以我们就将边变成点来求方案数。
那么怎么统计答案呢?我们可以有一个转移矩阵2m2m,其中\(f[i][j]\)代表第i条边(原图中)的起点与第j条边(原图中)是一个点(且ij不能是同一条边),就代表点(新图)i与点(新图)j是相连的。答案矩阵是一个12m的矩阵,\(ans[1][i]\)代表第i(原图)条边的终点为题目给的A.把ans与自乘t次的F矩阵相乘。然后
$$\sum ans[1][i](i代表终点为B的点(原图的边))$$就是答案。
其实我们可以理解为,ans就是加了一个虚点,代表着一个与所有起点为A的点(原图中的边)相连的点。乘后的ans代表这个虚点到所以点的方案。我们只要统计终点为B的点的方案数就可以了。
代码自带大常数==!
#include <stdio.h>
#include <iostream>
#include <cmath>
#include <queue>
#include <algorithm>
#include <cstring>
#include <climits>
#include <cstdlib>
#define MAXN (60+10)*2
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std;
int mod=45989,n,m,a,b,t,num,head[MAXN],tot,tail[MAXN],M;
struct Edge{
int next,to,from,next1;
}edge[MAXN<<1];
void add(int from,int to)
{
edge[++num].next=head[from];
edge[num].next1=tail[to];
edge[num].to=to;
edge[num].from=from;
head[from]=num;
tail[to]=num;
}
struct matrix{
int n,m;
int data[MAXN][MAXN];
void print()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
printf("%d ",data[i][j]);
printf("\n");
}
}
matrix operator * (matrix b)
{
matrix ans;
memset(ans.data,0,sizeof(ans.data));
ans.n=n;ans.m=b.m;
for(int i=1;i<=ans.n;i++)
for(int j=1;j<=ans.m;j++)
for(int k=1;k<=ans.m;k++)
ans.data[i][j]+=(data[i][k]*b.data[k][j])%mod,ans.data[i][j]%=mod;
return ans;
}
void too(matrix b)
{
n=b.n;m=b.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
data[i][j]=b.data[i][j];
}
}f,ans,zero,pf;
void power(int k)
{
if(k==1) pf=f;
else
{
power(k/2);
if(k%2==1) pf=pf*pf,pf=pf*f;
else pf=pf*pf;
}
}
int main()
{
scanf("%d%d%d%d%d",&n,&m,&t,&a,&b);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
f.n=f.m=2*m;ans.n=1;ans.m=2*m;M=2*m;
for(int i=head[a];i;i=edge[i].next) ans.data[1][i]=1;
for(int s=0;s<n;s++)
for(int i=head[s];i;i=edge[i].next)
for(int j=head[edge[i].to];j;j=edge[j].next)
if((i+1)!=((j+1)^1))
{
f.data[i][j]++;
}
power(t-1);ans=ans*pf;
for(int i=tail[b];i;i=edge[i].next1)
tot=(tot+ans.data[1][i])%mod;
printf("%d\n",tot);
return 0;
}
[BZOJ1975]HH去散步 图论+矩阵的更多相关文章
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
- 【SDOI2009】HH去散步(矩阵快速幂)
题面 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是 ...
- 1875. [SDOI2009]HH去散步【矩阵乘法】
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...
- [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】
题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...
- BZOJ 1875: [SDOI2009]HH去散步(矩阵乘法)
首先,题意就把我们引向了矩阵乘法,注意边长m<=60,那么就按边建图,变成一个120个点的图,然后乱搞就行了。 PS:WA了N久改了3次终于A了QAQ CODE: #include<cst ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- [SDOI2009]HH去散步 「矩阵乘法计数」
计数问题也许可以转化为矩阵乘法形式 比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可 故 矩阵乘法计数 对于计数问题,若可以将 \(n\) 个点表示成 \(n \ti ...
随机推荐
- mysql基础综述(四)
1.数据库的简单介绍 1.1 数据库,就是一个文件系统,使用标准sql对数据库进行操作 1.2 常见的数据库 oracle 是oracle公司的数据库,是一个收费的大型的数据库 DB2,是IBM公司 ...
- sql不显示反复列
在报表里,基本上都能够把反复的资料不显示,在SQL里怎么才干做到例如以下情况呢? a 10 a 20 b 30 b 40 b 50 显示为: a 10 20 b 30 40 50 SQL 例如以下: ...
- Geeks - Range Minimum Query RMQ范围最小值查询
使用线段树预处理.能够使得查询RMQ时间效率在O(lgn). 线段树是记录某范围内的最小值. 标准的线段树应用. Geeks上仅仅有两道线段树的题目了.并且没有讲到pushUp和pushDown操作. ...
- 初学ToggleButton 点击button,更换button背景图片;再次点击,恢复之前背景图
上方的图标,R.drawable.register_checked 是选中图片 下方的图标, R.drawable.register_unchecked 是未选中图片 默认是上方的选中效果.点击 ...
- dnscapy使用——本质上是建立ssh的代理(通过dns tunnel)
git clone https://github.com/cr0hn/dnscapy.git easy_install Scapy 服务端: python dnscapy_server.py a.fr ...
- [JavaEE] Maven简介
转载自:百度 http://baike.baidu.com/view/336103.htm?fr=aladdin 一.简介 Maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的构 ...
- SQL 数据库性能优化
http://blog.csdn.net/yzllz001/article/details/54848513 1. 减少数据访问(减少磁盘访问) 2. 返回更少数据(减少网络传输或磁盘访问) 3. ...
- Redis学习笔记(三) 基本命令:Key操作
参考:http://doc.redisfans.com/ del key 删除给定的一个或多个Key(多个key用空格隔开),删除成功返回1,当key不存在时,返回0:例:del no-exist-k ...
- linux中openssl生成证书和自签证书
1.首先要生成服务器端的私钥(key文件): 命令: openssl genrsa -des3 -out server.key 1024 运行时会提示输入密码,此密码用于加密key文件(参数des3便 ...
- 基础apache命令
在启动Apache服务之前,可以使用下面的命令来检查配置文件的正确性. C:\Apache2.2\bin> httpd -n Apache2.2 -t 还可以通过命令行控制Apache服务 ...