ROC曲线详解
转自https://blog.csdn.net/qq_26591517/article/details/80092679
1 ROC曲线的概念
受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为 感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一 信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以假阳性概率(False positive rate)为 横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。
ROC 曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。传统的诊断试验评价方 法有一个共同的特点,必须将试验结果分为两类,再进行统计分析。ROC曲线的评价方法与传统的评价方法不同,无须此限制,而是根据实际情况,允许有中间状 态,可以把试验结果划分为多个有序分类,如正常、大致正常、可疑、大致异常和异常五个等级再进行统计分析。因此,ROC曲线评价方法适用的范围更为广泛。
2 ROC曲线的例子
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也 被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。
FN:漏报,没有正确找到的匹配的数目;
TN:正确拒绝的非匹配对数;
列联表如下表所示,1代表正类,0代表负类。
从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1-FPR。
其中,两列True matches和True non-match分别代表两行Pred matches和Pred non-match分别代表匹配上和预测匹配上的
FPR = FP/(FP + TN) 负样本中的错判率(假警报率)
TPR = TP/(TP + TN) 判对样本中的正样本率(命中率)
ACC = (TP + TN) / P+N 判对准确率
在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例 的比类,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。
Receiver Operating Characteristic,翻译为”接受者操作特性曲线”,够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即假正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益 (benefits)。
此外,ROC曲线还可以用来计算“均值平均精度”下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。
其 正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。
ROC曲线详解的更多相关文章
- CSS transition 过渡 详解
transition 过渡 IE10.Firefox.Chrome.Opera 支持 transition 属性. Safari 需要前缀 -webkit-. Chrome 25 以及更早版本需要前缀 ...
- iOS 2D绘图详解(Quartz 2D)之路径(点,直线,虚线,曲线,圆弧,椭圆,矩形)
前言:一个路径可以包含由一个或者多个shape以及子路径subpath,quartz提供了很多方便的shape可以直接调用.例如:point,line,Arc(圆弧),Curves(曲线),Ellip ...
- ROC与AUC的定义与使用详解
分类模型评估: 指标 描述 Scikit-learn函数 Precision 精准度 from sklearn.metrics import precision_score Recall 召回率 fr ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 「视频直播技术详解」系列之七:直播云 SDK 性能测试模型
关于直播的技术文章不少,成体系的不多.我们将用七篇文章,更系统化地介绍当下大热的视频直播各环节的关键技术,帮助视频直播创业者们更全面.深入地了解视频直播技术,更好地技术选型. 本系列文章大纲如下: ...
- CSS详解
Web前端开发css基础样式总结 颜色和单位的使用 颜色 用颜色的名字表示颜色,比如:red 用16进制表示演示 比如:#FF0000 用rgb数值表示颜色,rgb(红,绿,蓝),每个值都在0-255 ...
- IOS Animation-CABasicAnimation、CAKeyframeAnimation详解&区别&联系
1.先看看网上流传的他们的继承图: 从上面可以看出CABasicAnimation与CAKeyframeAnimation都继承于CAPropertyAnimation.而CAPropertyAnim ...
- Android之canvas详解
首先说一下canvas类: Class Overview The Canvas class holds the "draw" calls. To draw something, y ...
- SIFT算法详解(转)
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...
随机推荐
- CentOS7 xrdp 安装和设置
1) 安装 $ sudo yum install xrdp $ sudo yum install tigervnc $ sudo yum install tigervnc-server 2) 设置密码 ...
- java8学习之Stream介绍与操作方式详解
关于默认方法[default method]的思考: 在上一次[http://www.cnblogs.com/webor2006/p/8259057.html]中对接口的默认方法进行了学习,那在Jav ...
- java虚拟机的基本结构如图
1 java虚拟机的基本结构如图: 1)类加载子系统负责从文件系统或者网络中加载Class信息,加载的类信息存放于一块称为方法区的内存空间.除了类的信息外,方法区中可能还会存放运行时常量池信息,包括字 ...
- New!Devexpress WinForms各版本支持Visual Studo和SQL Server版本对应图
点击获取DevExpress v19.2.3最新完整版试用下载 本文主要为大家介绍DevExpress WinForms各大版本支持的VS版本和支持的.Net版本图,Devexpress WinFor ...
- java8 Date Localdatetime instant 相互转化(转) 及当天的最大/最小时间
Java 8中 java.util.Date 类新增了两个方法,分别是from(Instant instant)和toInstant()方法 // Obtains an instance of Dat ...
- Java的日期与时间 java.time.Duration (转)
一个Duration对象表示两个Instant间的一段时间,是在Java 8中加入的新功能. 一个Duration实例是不可变的,当创建出对象后就不能改变它的值了.你只能通过Duration的计算方法 ...
- 03 深入远程执行:target目标、模块modules、返回returns
0.学习目的 http://docs.saltstack.cn/topics/execution/index.html 官方文档 0.1 命令解释 [root@host---- ~]# salt ' ...
- Python之multiprocessing模块的使用
作用:Python多进程处理模块,解决threading模块不能使用多个CPU内核,避免Python GIL(全局解释器)带来的计算瓶颈. 1.开启多进程的简单示例,处理函数无带参数 #!/usr/b ...
- 彻底卸载干净docker并且安装docker 指定版本
yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-la ...
- linux下ssh免秘钥登录
1.检查防火墙是否关闭 (1)切换到root用户 (2)查看防火墙状态 service iptables status 这是没有关闭 (3)设置关闭 service iptables stop 2.检 ...