Selective Search for Object Recognition

是J.R.R. Uijlings发表在2012 IJCV上的一篇文章。主要介绍了选择性搜索(Selective Search)的方法。选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法。选择性搜索意在找出可能的目标位置来进行物体的识别。与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法

现实中,很多图像是包含多类别,多层次的信息的,如上图。所以我们要用到多层分割的方法,并且要用多种分割策略。

(一)选择性搜索(selectivesearch)

1.      分层分组:区域包含的信息比像素多,所以我们的特征是基于区域的。为了得到一些小的初始化的区域,用的是[13]中区域划分的方法。

[13]具体看http://blog.sciencenet.cn/blog-261330-722530.html

然后我们的分层分组算法如下:

我们首先用[13]得到一些初始化的区域R={r1,….rn}

计算出每个相邻区域的相似性s(ri,rj)

1.      找出相似性最大的区域max(S)={ri,rj}

2.      合并rt=ri∪rj

3.      从S集合中,移走所有与ri,rj相关的数据

4.      计算新集合rt与所有与它相邻区域的相似性s(rt,r*)

5.      R=R∪rt

直到S集合为空,重复1~5。

2.      各种分割策略

关于s(ri,rj)的计算,我们有多种方法,但要注意的是这些相似性特征应该是可以传递的。如当我们合并ri和rj成rt时,rt的特征可以由ri和rj直接计算,而不需要根据他们每个像素点的值进行重新计算。

(1)      多种颜色模型(color model):文章共比较了8种颜色模型

(2)      相似性准则的补充(complementary similarity measure)

共介绍了四种准则,每一种都是可以快速计算的。

Scolor(ri,rj)用于计算ri,rj的相似性。对每个区域,我们都可以得到一个一维的颜色分布直方图。直方图一共有25个区间,区域i的颜色分布直方图为

如果有3个颜色通道,则n=75。还要用L1 norm来进行归一化。

当i和j合并成t,区域t的颜色分布直方图可以用下面式子进行计算:

t 的size用下面式子计算:

Stexture(ri,rj)我们可以用到SIFT(局部特征描述子)

SIFT介绍见:http://www.cnblogs.com/saintbird/archive/2008/08/20/1271943.html

我们取8个方向,方差为1的高斯滤波器,10个空间的直方图来描述。

如果有3个颜色通道,n=240=8*3*10,同理得到区域i的纹理直方图要用L1norm归一化。

同理,纹理的传递性也可以用(2)式解决。

Ssize (ri,rj)鼓励小的区域尽早合并。

size(im)表示整个图片的像素数目。

Sfill (ri,rj)鼓励有相交或者有包含关系的区域先合并。

BBij指包含i,j区域的最小外包区域。

在这篇文章中,我们用到如下计算相似性:

3.      初始化区域

用[13]得到的初始化区域可以根据阈值k得到不同的结果。

(二)用选择性搜索进行识别(object recognition using selective search)

1.  训练数据的产生

在训练数据上,标注出目标区域,如上图中绿色高亮区域的奶牛,将这些标注区域作为正样本。使用selective search产生目标假设区域(也就是若干个分割区域)。将分割区域的外接矩形和目标标注区域的重叠度在20%~50%之间的区域标注为负样本。我们规定负样本之间不能有超过70%的重叠。

有了正样本和负样本之后,我们用的特征提取方法是:

color-SIFT descriptors[32]+a finer spatialpyramid division[18]

然后进行SVM训练。

2.   迭代训练

采用迭代训练方式,在每次训练完成之后,挑选出false positives样本,并将其加入到训练样本中,其实这便是增加了困难样本数。使用其进行模型训练,直到收敛(精度不在产生变化)。

(三)评价(evaluation)

文章给出了一些判断标准。

ABO(Average Best Overlap)

G应该是物体所在的目标区域。L是selective search算法算出的候选区域。找出Selective Search算法中与该类目标区域覆盖最多的区域。覆盖率由(8)式计算。然后再除以该类的数目。

MABO(Mean Average Best Overlap)就是计算每一类的ABO值,再求均值。

之后的实验都是基于这两个评判标准的,详细结果看论文。

本文提到的Reference:

[13] P. F. Felzenszwalb and D. P.Huttenlocher. Efficient Graph-Based Image Segmentation. IJCV, 59:167–181, 2004.

[18] S. Lazebnik, C. Schmid, and J. Ponce.Beyond bags of features: Spatial pyramid matching for recognizing natural scenecategories. In CVPR, 2006.

[32] K. E. A. van de Sande, T. Gevers, andC. G. M. Snoek. Evaluating color descriptors for object and scenerecognition.TPAMI, 32:1582–1596, 2010.


代码下载地址:http://pan.baidu.com/s/1sjOLbat

【计算机视觉】Selective Search for Object Recognition论文阅读2的更多相关文章

  1. 【计算机视觉】Selective Search for Object Recognition论文阅读3

    Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前 ...

  2. 【计算机视觉】Selective Search for Object Recognition论文阅读1

    Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...

  3. Selective Search for Object Recognition 论文笔记【图片目标分割】

    这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对 ...

  4. 论文笔记:Selective Search for Object Recognition

    与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and seman ...

  5. [论文理解]Selective Search for Object Recognition

    Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective ...

  6. 目标检测--Selective Search for Object Recognition(IJCV, 2013)

    Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...

  7. Selective Search for Object Recognition

    http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R. ...

  8. Notes on 'Selective Search For Object Recognition'

    UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基 ...

  9. 机器学习:Selective Search for Object Recognition

    今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候, ...

随机推荐

  1. 节点(node)操作

    一.节点的属性 节点值页面中的所有内容,包括标签.属性.文本 nodeType,节点类型:如果是标签,则是1:如果是属性.则是2:如果是文本,则是3 nodeName,节点名字:如果是标签,则是大写的 ...

  2. linux查看系统启动时间

    1.uptime命令 felix@felix-computer:~$ uptime :: up :, user, load average: 0.89, 0.74, 1.00 felix@felix- ...

  3. NetworkX系列教程(1)-创建graph

    小书匠Graph图论 研究中经常涉及到图论的相关知识,而且常常面对某些术语时,根本不知道在说什么.前不久接触了NetworkX这个graph处理工具,发现这个工具已经解决绝大部分的图论问题(也许只是我 ...

  4. 激活 phpstorm2019.1 win10

    首先添加以下内容到c:\windows\system32\drivers\etc\hosts 文件 0.0.0.0 account.jetbrains.com 0.0.0.0 www.jetbrain ...

  5. Concurrent初探 --- Atomic 无锁

    一.CAS算法 Compare And Swap,CAS算法的过程是这样:它包含3个参数CAS(V,E,N).V表示要更新的变量,E表示预期值,N表示新值.仅当V值等于E值时,才会将V的值设为N,如果 ...

  6. java读取excel文件数据导入mysql数据库

    这是我来公司的第二周的一个小学习任务,下面是实现过程: 1.建立maven工程(方便管理jar包) 在pom.xml导入 jxl,mysql-connector 依赖 可以在maven仓库搜索 2.建 ...

  7. Java网站视频资源加密

    ----------------------------------------------------------分享此文章,只为让版权能够得到更多的保护---------------------- ...

  8. TynSerial自定义对象的序列(还原)

    TynSerial自定义对象的序列(还原) TynSerial是咏南中间件封装的支持数据二进制序列(还原)的类. 对于ORM来说,序列类必须序列(还原)自定义对象. 1)定义一个自定义对象 type ...

  9. Redis 命令使用

    Redis 中所有 key-value 都储存在 Redis-Object 中,Redis-Object 主要信息有: 数据类型(type) string (字符串) hash (Hash表) lis ...

  10. OpenTK学习笔记(2)-工作窗口的三种方法创建方法(控制台)

    参考资料: 控制台下类的形式创建:http://www.cnblogs.com/podolski/p/7406628.html 总结: 一.控制台下类的形式创建 1.新建控制台应用 2.连网执行Nug ...