Selective Search for Object Recognition

是J.R.R. Uijlings发表在2012 IJCV上的一篇文章。主要介绍了选择性搜索(Selective Search)的方法。选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法。选择性搜索意在找出可能的目标位置来进行物体的识别。与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法

现实中,很多图像是包含多类别,多层次的信息的,如上图。所以我们要用到多层分割的方法,并且要用多种分割策略。

(一)选择性搜索(selectivesearch)

1.      分层分组:区域包含的信息比像素多,所以我们的特征是基于区域的。为了得到一些小的初始化的区域,用的是[13]中区域划分的方法。

[13]具体看http://blog.sciencenet.cn/blog-261330-722530.html

然后我们的分层分组算法如下:

我们首先用[13]得到一些初始化的区域R={r1,….rn}

计算出每个相邻区域的相似性s(ri,rj)

1.      找出相似性最大的区域max(S)={ri,rj}

2.      合并rt=ri∪rj

3.      从S集合中,移走所有与ri,rj相关的数据

4.      计算新集合rt与所有与它相邻区域的相似性s(rt,r*)

5.      R=R∪rt

直到S集合为空,重复1~5。

2.      各种分割策略

关于s(ri,rj)的计算,我们有多种方法,但要注意的是这些相似性特征应该是可以传递的。如当我们合并ri和rj成rt时,rt的特征可以由ri和rj直接计算,而不需要根据他们每个像素点的值进行重新计算。

(1)      多种颜色模型(color model):文章共比较了8种颜色模型

(2)      相似性准则的补充(complementary similarity measure)

共介绍了四种准则,每一种都是可以快速计算的。

Scolor(ri,rj)用于计算ri,rj的相似性。对每个区域,我们都可以得到一个一维的颜色分布直方图。直方图一共有25个区间,区域i的颜色分布直方图为

如果有3个颜色通道,则n=75。还要用L1 norm来进行归一化。

当i和j合并成t,区域t的颜色分布直方图可以用下面式子进行计算:

t 的size用下面式子计算:

Stexture(ri,rj)我们可以用到SIFT(局部特征描述子)

SIFT介绍见:http://www.cnblogs.com/saintbird/archive/2008/08/20/1271943.html

我们取8个方向,方差为1的高斯滤波器,10个空间的直方图来描述。

如果有3个颜色通道,n=240=8*3*10,同理得到区域i的纹理直方图要用L1norm归一化。

同理,纹理的传递性也可以用(2)式解决。

Ssize (ri,rj)鼓励小的区域尽早合并。

size(im)表示整个图片的像素数目。

Sfill (ri,rj)鼓励有相交或者有包含关系的区域先合并。

BBij指包含i,j区域的最小外包区域。

在这篇文章中,我们用到如下计算相似性:

3.      初始化区域

用[13]得到的初始化区域可以根据阈值k得到不同的结果。

(二)用选择性搜索进行识别(object recognition using selective search)

1.  训练数据的产生

在训练数据上,标注出目标区域,如上图中绿色高亮区域的奶牛,将这些标注区域作为正样本。使用selective search产生目标假设区域(也就是若干个分割区域)。将分割区域的外接矩形和目标标注区域的重叠度在20%~50%之间的区域标注为负样本。我们规定负样本之间不能有超过70%的重叠。

有了正样本和负样本之后,我们用的特征提取方法是:

color-SIFT descriptors[32]+a finer spatialpyramid division[18]

然后进行SVM训练。

2.   迭代训练

采用迭代训练方式,在每次训练完成之后,挑选出false positives样本,并将其加入到训练样本中,其实这便是增加了困难样本数。使用其进行模型训练,直到收敛(精度不在产生变化)。

(三)评价(evaluation)

文章给出了一些判断标准。

ABO(Average Best Overlap)

G应该是物体所在的目标区域。L是selective search算法算出的候选区域。找出Selective Search算法中与该类目标区域覆盖最多的区域。覆盖率由(8)式计算。然后再除以该类的数目。

MABO(Mean Average Best Overlap)就是计算每一类的ABO值,再求均值。

之后的实验都是基于这两个评判标准的,详细结果看论文。

本文提到的Reference:

[13] P. F. Felzenszwalb and D. P.Huttenlocher. Efficient Graph-Based Image Segmentation. IJCV, 59:167–181, 2004.

[18] S. Lazebnik, C. Schmid, and J. Ponce.Beyond bags of features: Spatial pyramid matching for recognizing natural scenecategories. In CVPR, 2006.

[32] K. E. A. van de Sande, T. Gevers, andC. G. M. Snoek. Evaluating color descriptors for object and scenerecognition.TPAMI, 32:1582–1596, 2010.


代码下载地址:http://pan.baidu.com/s/1sjOLbat

【计算机视觉】Selective Search for Object Recognition论文阅读2的更多相关文章

  1. 【计算机视觉】Selective Search for Object Recognition论文阅读3

    Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前 ...

  2. 【计算机视觉】Selective Search for Object Recognition论文阅读1

    Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...

  3. Selective Search for Object Recognition 论文笔记【图片目标分割】

    这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对 ...

  4. 论文笔记:Selective Search for Object Recognition

    与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and seman ...

  5. [论文理解]Selective Search for Object Recognition

    Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective ...

  6. 目标检测--Selective Search for Object Recognition(IJCV, 2013)

    Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...

  7. Selective Search for Object Recognition

    http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R. ...

  8. Notes on 'Selective Search For Object Recognition'

    UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基 ...

  9. 机器学习:Selective Search for Object Recognition

    今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候, ...

随机推荐

  1. / WebAPP开发与小程序 / 步骤一 · 4-5 地图搜索与poi结合(2)

    / WebAPP开发与小程序 / 步骤一 · 4-5 地图搜索与poi结合(2) 在地图中搜索指定对象时,搜索结果可以显示出每个对象的图片,就差这个不会了

  2. DIV半透明层

    想使用DIV半透明层时 只需加一个filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5    0.5为半透明系数 使用前 使用后 style=& ...

  3. NetworkX系列教程(5)-查看graph的信息

    小书匠Graph图论 有时候graph建好后,我们并不清除该graph内节点的,边的信息,这就需要调用函数去查看了. 目录: 6.查看Graph的信息 6.1查看graph内节点,边的 6.2查看gr ...

  4. Proxmox VE 的安装和简单使用

    Proxmox VE Proxmox ve 安装 如果proxmox源太慢了.可以使用国内源 download.proxmox.wiki 直接替换就可以了. ISO U盘方式安装 下载地址:https ...

  5. bochs调试命令

    Bochs几条基本指令: 通过物理地址查看内存时,可以不加参数'/nuf': 其中n指定显示的单元数,默认是1: u 指定每个显示单元的大小(b表示字节.h表示字(2字节).w表示双字(4字节)),默 ...

  6. PaintCode 教程:矢量图轻松转换成CoreGraphics代码

    本文译自Ranwenderlich的这篇:http://www.raywenderlich.com/100281/paintcode-for-designers-getting-started Pai ...

  7. 编程微语 2019-Summer

    不支持重新生成不是好的代码生成器.重新生成就会覆盖手工修改,实用性大打折扣.相比工具,更接近玩具.2019-05-04 有很多个标准,各自为政,就相当于没有标准.目前地球的文档(如纯文本/Word/P ...

  8. java maven scope compile,provide,system,test,runtime

    在一个maven项目中,如果存在编译需要而发布不需要的jar包,可以用scope标签,值设为provided.如下: <dependency>            <groupId ...

  9. SpringBoot + Vue前后端分离图片上传到本地并前端访问图片

    同理应该可用于其他文件 图片上传 application.yml 配置相关常量 prop: upload-folder: E:/test/ # 配置SpringMVC文件上传限制,默认1M.注意MB要 ...

  10. Echarts常用API(echarts和echartsInstance)

    一.echarts上的方法 一般在项目中引入echarts之后,可以获得一个全局的echarts对象. 1.下面是几个比较常用的echarts方法 echarts.init() 创建一个echarts ...