因子机的定义

机器学习中的建模问题可以归纳为从数据中学习一个函数,它将实值的特征向量映射到一个特定的集合中。例如,对于回归问题,集合 T 就是实数集 R,对于二分类问题,这个集合可以是{+1,-1}。对于监督学习,通常有一标注的训练样本集合

线性函数是最简单的建模函数,它假定这个函数可以用参数w来刻画,

对于回归问题,,而对于二分类问题,需要做对数几率函数变换(逻辑回归)

线性模型的缺点是无法学到模型之间的交互,而这在推荐和CTR预估中是比较关键的。例如,CTR预估中常将用户id和广告id onehot 编码后作为特征向量的一部分。

为了学习特征间的交叉,SVM通过多项式核函数来实现特征的交叉,实际上和多项式模型是一样的,这里以二阶多项式模型为例

多项式模型的问题在于二阶项的参数过多,设特征维数为n,那么二阶项的参数数目为n(n-1)/2,对于广告点击率预估问题,由于存在大量id特征,导致n可能为107维,这样一来,模型参数的 量级为1014,这比样本量4x107多得多!这导致只有极少数的二阶组合模式才能在样本中找到, 而绝大多数模式在样本中找不到,因而模型无法学出对应的权重。例如,对于某个wij样本中找不到xi=1,xj=1(这里假定所有的特征都是离散的特征,只取0和1两个值)这种样本,那么wij的梯度恒为0,从而导致参数学习失败!

很容易想到,可以对二阶项参数施加某种限制,减少模型参数的自由度。FM 施加的限制是要求二阶项系数矩阵是低秩的,能够分解为低秩矩阵的乘积

这样一来,就将参数个数减少到kn,可以设置较少的k值(一般设置在100以内,k<<n),极大地减少模型参数,增强模型泛化能力,这跟矩阵分解的方法是一样的。向量vi可以解释为第i个特征对应的隐因子或隐向量。 以user和item的推荐问题为例,如果该特征是user,可以解释为用户向量,如果是item,可以解释为物品向量。

计算复杂度

因为引入和二阶项,如果直接计算,时间复杂度将是O(n2),n是特征非零特征数目, 可以通过简单的数学技巧将时间复杂度减少到线性时间复杂度。

基于一个基本的观察,齐二次交叉项之和可以表达为平方和之差

上式左边计算复杂度为O(n2),而右边是O(n),根据上式,可以将原表达式中二次项化简为

上式计算时间复杂度是O(n)

基于梯度的优化都需要计算目标函数对参数的梯度,对FM而言,目标函数对参数的梯度可以利用链式求导法则分解为目标函数对Φ的梯度和∂Φ/∂θ的乘积。前者依赖于具体任务,后者可以简单的求得

优化方案

原论文中给出了三种优化方案,它们分别是

  1. 随机梯度下降,这种方案收敛慢而且非常敏感,可以利用现代的一些trick,例如采用 AdaGrad 算法,采用自适应学习率,效果相对比较好,论文[6]对FFM就采用这种方案。
  2. 交替方向乘子(ALS),这种方案只适用于回归问题,它每次优化一个参数,把其他参数固定,好处是每次都是一个最小二乘问题,有解析解。
  3. 基于蒙特卡罗马尔科夫链的优化方案,论文中效果最好的方案,细节可以参考原文。

FFM

在实际预测任务中,特征往往包含多种id,如果不同id组合时采用不同的隐向量,那么这就是 FFM(Field Factorization Machine) 模型[6]。它将特征按照事先的规则分为多个场(Field),特征xi属于某个特定的场f,每个特征将被映射为多个隐向量,每个隐向量对应一个场。当两个特征xi,xj组合时,用对方对应的场对应的隐向量做内积!

fi,fj分别是特征xi,xj对应的场编号。FFM 由于引入了场,使得每两组特征交叉的隐向量都是独立的,可以取得更好的组合效果,但是使得计算复杂度无法通过优化变成线性时间复杂度,每个样本预测的时间复杂度为O(n2 k),不过FFM的k值通常远小于FM的k值。有论文对FFM在Criteo和Avazu两个任务(Kaggle上的两个CTR预估比赛)上进行了试验,结果表明 FFM 的成绩优于 FM。事实上,FM 可以看做只有一个场的 FFM。

FM与FFM深入解析的更多相关文章

  1. 深入FM和FFM原理与实践

    FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过 ...

  2. FFM算法解析及Python实现

    1. 什么是FFM? 通过引入field的概念,FFM把相同性质的特征归于同一个field,相当于把FM中已经细分的feature再次进行拆分从而进行特征组合的二分类模型. 2. 为什么需要FFM? ...

  3. GBDT,FM,FFM推导

    GBDT推导: https://xgboost.readthedocs.io/en/latest/tutorials/model.html FM,FFM推导: https://tech.meituan ...

  4. 深入理解FM和FFM

    公司主要用这两个模型来进行广告预测. http://geek.csdn.net/news/detail/59793 FM主要是处理在onehot之后,矩阵稀疏的问题. 在引入fm之后,能够更好的处理特 ...

  5. LR、Poly2、FM、FFM

    1. LR LR的linear Margin: 假设特征之间是相互独立的,忽略了feature pair等高阶信息:在LR中,特征组合等高阶信息是通过特征工程在特征侧引入的,那么有哪些模型不需要通过特 ...

  6. 在排序模型方面,点评搜索也经历了业界比较普遍的迭代过程:从早期的线性模型LR,到引入自动二阶交叉特征的FM和FFM,到非线性树模型GBDT和GBDT+LR,到最近全面迁移至大规模深度学习排序模型。

    https://mp.weixin.qq.com/s/wjgoH6-eJQDL1KUQD3aQUQ 大众点评搜索基于知识图谱的深度学习排序实践 原创: 非易 祝升 仲远 美团技术团队 前天    

  7. 推荐系统算法学习(一)——协同过滤(CF) MF FM FFM

    https://blog.csdn.net/qq_23269761/article/details/81355383 1.协同过滤(CF)[基于内存的协同过滤] 优点:简单,可解释 缺点:在稀疏情况下 ...

  8. FM/FFM原理

    转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, ...

  9. DeepFM算法解析及Python实现

    1. DeepFM算法的提出 由于DeepFM算法有效的结合了因子分解机与神经网络在特征学习中的优点:同时提取到低阶组合特征与高阶组合特征,所以越来越被广泛使用. 在DeepFM中,FM算法负责对一阶 ...

随机推荐

  1. Java 之 IO流概述

    一.IO 流 我们知道存在硬盘中数据是永久保存的,而在内存中的数据只是临时的,内存中的数据可以存入硬盘中,硬盘中的数据也也可以读入内存中. 我们把这种数据的传输,可以看做一种数据的流动,按照流动的方法 ...

  2. day14-python之集合函数字符串格式化

    1.集合 #!/usr/bin/env python # -*- coding:utf-8 -*- # s=set(['alex','alex','sb']) # print(s) # s=set(' ...

  3. 关于#error

    很简单的一个东西,但是感觉使用价值没有太大.实现了以下,结果如下: 执行到#error语句的时候直接停止编译,在下面输出设定好的错误信息. 来自为知笔记(Wiz)

  4. 只需五分钟-用Maven快速搭建Spring Cloud微服务

    Maven安装手册 1.准备安装包 安装包: apache-maven-3.5.4-bin.zip  (最好JDK 1.7及以上版本) 集成包: eclipse-maven3-plugin.zip 2 ...

  5. cd .ssh返回-bash: cd: .ssh:No such file or directory怎么办

    继续上一篇博文 今天再次陷入同样的问题 避免这个问题的另一个套路是用节点和其他节点直接ssh 远程连接,需要输入密码, 但是输入再次退出之后就OK了 cd 可以到.ssh了  然后就可以开心的免密了

  6. 说说你对kubernetes的理解(简单)

    目录 整体概述 pod工作流程 k8s网络 flannel 网络策略,network proxy 几套证书理解 组件 master管理节点上组件 node节点 整体概述 k8s是一个编排工具,是谷歌的 ...

  7. 浅谈sqoop

    1.sqoop的概述a.sqoop 是一款工具,是appche 旗下的一款工具,主要是负责 hadoop与RDBMS之间的数据迁移,即从hadoop 文件系统 导出数据到RDBMS,从RDBMS导入数 ...

  8. python接口自动化1-requests-html支持JavaScript渲染页面

    前言 requests虽好,但有个遗憾,它无法加载JavaScript,当访问一个url地址的时候,不能像selenium一样渲染整个html页面出来.requests-html终于可以支持JavaS ...

  9. Bash基础——Shell脚本内部常用环境变量

    $@和$*区别 不加引号的时候没区别 #! /usr/bin/bash function print_args_at { printf "%s\n" $@ echo $@ } fu ...

  10. 模板引擎-vue中的模板如何被解析,指令如何处理

    模板是什么 <div id='app'> <div> <input v-model="title"/> <button v-on:clic ...