题意

  求 \(n\) 个点的 Treap 深度为 \(h=0,1,2,\cdots,n\) 的概率。

  Treap 是一个随机二叉树,每个节点有权值和优先级,权值和优先级都是 \([0,1]\) 中的随机实数。niubi 的是,由于随机的实数精度足够高,你可以近似认为任意两个权值、任意两个优先级相同的概率是 \(0\)。

  \(n\le 30000\)

题解

  又是神题,我他吗都做不来

  官方题解大概是这样,但本蒟蒻完全没看懂,于是只好向 scb 大佬请教了另一种思考方法(得到的 dp 式子一样)。

  考虑 Treap 的构造方式:先随机选择 \(n\) 个权值,然后从空树开始,每次插入一个节点。插入操作如下:先随机一个优先级 \(p\),无视优先级,按照二叉搜索树的方式插入这个节点,然后考虑优先级,一直把这个节点往上旋转,直到满足优先级条件。

  若我们事先确定了每个权值的优先级,那么把权值按优先级从大到小排序,不难发现 Treap 的加点就变成了每次给树加一个叶子。由于 \(n\) 个数的大小关系不变时 Treap 的形态也不变,我们可以把 \(n\) 个权值离散化成 \(1\) 到 \(n\) 这 \(n\) 个整数,问题是完全等价的。

  权值序列的每个数都不是确定的,而是在 \([0,1]\) 任取一个实数,为什么可以离散化成 \(1\) 到 \(n\) 这 \(n\) 个整数?如何证明每种 \(1\) 到 \(n\) 的排列对应的原权值序列的数量相同?(不然离散化后算的概率不一样啊)

  遗憾的是,这个需要微积分等高数知识,过程也比较复杂,本蒟蒻不会简单证法。目前把这当成常识记住就好了。

  现在优先级已经没用了,我们只需要考虑每次给树加一个权值为 \([1,n]\) 内整数的叶子,这棵树要满足二叉搜索树的性质(即任意点的权值小于其左儿子,大于其右儿子)。求每种树高的出现概率。

  这就跟普通的求方案数类似,设 \(dp(i,j)\) 表示权值为 \(1,2,\cdots j\) 的点构成深度不大于 \(i\) 的树的概率,则我们枚举根的权值 \(k\),其左子树的权值集合为 \(\{1,2,\cdots,k-1\}\),概率就是 \(dp(i-1,k-1)\);其右子树的权值集合为 \(\{k+1,k+2,\cdots,j\}\),等价于集合 \(\{1,2,\cdots,j-k\}\),概率是 \(dp(i-1,j-k)\)。把所有 \(k\) 对应的概率求平均值,就得到了 \(dp(i,j)\)。$$dp(i,j)=\frac{1}{j} \sum\limits_{k=1}^j f(i-1,k-1)\times f(i-1,j-k)$$

  \(O(n^3)\) 转移可得 \(40\) 分。

  然后发现由于权值随机,而且 Treap 本身就是在随机优先级时树高维持在 \(\log n\) 级别的数据结构,故期望树高为 \(O(\log n)\),概率都会集中在这附近。实测大概只需要算到 \(dp(50,)\) 即可满足精度要求。\(O(50n^2)\) 可得 \(50\) 分。

  然后发现上式显然是个卷积形式,把 \(dp(i)\) 看成生成函数,转移就是 \(f(i)\) 自己卷自己,\(\text{FFT}\) 即可。复杂度 \(O(50n\log n)\),可得 \(100\) 分。

#include<bits/stdc++.h>
#define N 131075
using namespace std;
inline int read(){
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return 0-x;
}
int n;
const double PI = acos(-1);
struct cp{
double r,i;
cp(){r=i=0;}
cp(double _r, double _i){r=_r, i=_i;}
friend cp operator + (cp a, cp b){return cp(a.r+b.r, a.i+b.i);}
friend cp operator - (cp a, cp b){return cp(a.r-b.r, a.i-b.i);}
friend cp operator * (cp a, cp b){return cp(a.r*b.r-a.i*b.i, a.r*b.i+a.i*b.r);}
friend cp operator / (cp a, double b){return cp(a.r/b, a.i/b);}
}dp[N];
struct Poly{
int n,bit,r[N];
void init(int x){
for(n=1,bit=0; n<x; n<<=1,++bit);
for(int i=1; i<n; ++i) r[i]=(r[i>>1]>>1)|((i&1)<<(bit-1));
}
void dft(cp *a, int f){
for(int i=0; i<n; ++i) if(i<r[i]) swap(a[i],a[r[i]]);
cp wn,w,x,y;
for(int i=1; i<n; i<<=1){
wn=cp(cos(PI/i),sin(f*PI/i));
for(int j=0; j<n; j+=i<<1){
w=cp(1,0);
for(int k=0; k<i; ++k,w=w*wn)
x=a[j+k], y=w*a[j+i+k],
a[j+k]=x+y, a[j+i+k]=x-y;
}
}
if(f==-1) for(int i=0; i<n; ++i) a[i]=a[i]/n;
}
}FFT;
int main(){
n=read();
FFT.init(n*2+1);
dp[0]=cp(1,0); double lst=0;
for(int scx=1; scx<=min(n,50); ++scx){
FFT.dft(dp,1);
for(int i=0; i<FFT.n; ++i) dp[i]=dp[i]*dp[i];
FFT.dft(dp,-1);
for(int i=n; i<FFT.n; ++i) dp[i]=cp(0,0);
for(int i=n; i>0; --i) dp[i]=dp[i-1]/i; dp[0]=cp(1,0);
printf("%.10lf\n",dp[n].r-lst);
lst=dp[n].r;
}
for(int i=min(n,50)+1; i<=n; ++i) printf("%.10lf\n",0);
return 0;
}

【未知来源】Randomized Binary Search Tree的更多相关文章

  1. 【XSY2332】Randomized Binary Search Tree 概率DP FFT

    题目描述 \(\forall 0\leq i<n\),求有多少棵\(n\)个点,权值和优先级完全随机的treap的树高为\(i\). \(n\leq 30000\) 题解 设\(f_{i,j}\ ...

  2. 【xsy2332】Randomized Binary Search Tree DP+FFT

    题目大意:给你一个$[0,1]$之间等概率随机序列,你需要把这个序列插入到一棵$treap$中,问这棵$treap$的期望深度,请对于$[1,n]$中的每个深度分别输出它的概率(实数,保留五位小数). ...

  3. [LeetCode]题解(python):098 Validate Binary Search Tree

    题目来源 https://leetcode.com/problems/validate-binary-search-tree/ Given a binary tree, determine if it ...

  4. 一道二叉树题的n步优化——LeetCode98validate binary search tree(草稿)

    树的题目,往往可以用到三种遍历.以及递归,因为其结构上天然地可以往深处递归,且判断条件也往往不复杂(左右子树都是空的). LeetCode 98题讲的是,判断一棵树是不是二叉搜索树. 题目中给的是标准 ...

  5. 【LeetCode】 99. Recover Binary Search Tree [Hard] [Morris Traversal] [Tree]

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

  6. Lowest Common Ancestor of a Binary Search Tree(树中两个结点的最低公共祖先)

    题目描述: Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in ...

  7. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  8. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

随机推荐

  1. liunx基本操作命令

    1.  rm  删除命令 rm   -i  文件名-----------询问y/N 删除文件 rm  -f  文件名-----------直接删除文件 rm  -r  目录 rm   文件名 rm  ...

  2. 图文详解 : 什么是版本控制?Eclipse配置SVN和IDEA配置GIT教程

    前言 虽然在工作中, VCS已然配置妥当, 我们敲好的业务只需要Commit&push提交就好, 但是不妨碍我们了解什么是版本控制, 为什么要使用这类工具? ps.最近项目里的小伙伴想在自己家 ...

  3. highway network及mnist数据集测试

    先说结论:没经过仔细调参,打不开论文所说代码链接(fq也没打开),结果和普通卷积网络比较没有优势.反倒是BN对网络起着非常重要的作用,达到了99.17%的测试精度(训练轮数还没到过拟合). 论文为&l ...

  4. CF444A DZY Loves Physics【结论】

    题目传送门 话说这道题不分析样例实在是太亏了...结论题啊... 但是话说回来不知道它是结论题的时候会不会想到猜结论呢...毕竟样例一.二都有些特殊. 观察样例发现选中的子图都只有一条边. 于是猜只有 ...

  5. 数据传输协议protobuf的使用及案例

    一.交互流程图: 总结点: 问题:一开始设置http请求中content-type 设置为默认文本格式,导致使用http传输body信息的时候必须进行base64加密才可以传输,这样会导致增加传输1/ ...

  6. 【1.1】mysql frm文件丢失(ibd文件丢失)

    [1]故障模拟准备环境 这里以innodb为例 [1.1]配置参数 开启独立表空间 innodb_file_per_table; [1.2]构建测试数据 create database test; c ...

  7. 自动载入Python虚拟环境

    自动载入Python虚拟环境 在安装jumpserver服务时发现可以使用autoenv来自动载入python虚拟环境,很好,非常好. $ cd /opt $ git clone https://gi ...

  8. 基于 CentOS 7 搭建 GitLab

    ⒈更新软件包 yum update -y ⒉安装 ssh服务并启动 yum install -y curl policycoreutils-python openssh-server systemct ...

  9. 向量运算(lua,三维) 点乘、叉乘、模、夹角

    向量运算在游戏制作中经常用到,稍微总结一下. 一.点乘 如图,假设   向量a与b的点乘表示a在b上的投影与b的模的乘积 公式: 代码: function MathHelper.GetVector3D ...

  10. lua的数据类型

    Lua 是动态(弱)类型的语言,它有一下几种数据结构: nil(空) nil 类型表示一种没有任何有效值,它只有一个值 -- nil,例如打印一个没有赋值的变量,便会输出一个 nil 值: print ...