D. Power Tower

time limit per test

4.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power w**k then value of power of a new tower will be {w**k}p.

Rocks are added from the last to the first. That is for sequence w1, ..., w**m value of power will be

After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.

Input

First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).

Second line of input contains n integers w**k (1 ≤ w**k ≤ 109) which is the power of rocks that priests have.

Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.

k**th of next q lines contains two integers l**k and r**k (1 ≤ l**k ≤ r**k ≤ n).

Output

Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks l**k, l**k + 1, ..., r**k.

Example

input

Copy

6 10000000001 2 2 3 3 381 11 62 22 32 44 44 54 6

output

Copy

1124256327597484987

Note

327 = 7625597484987

思路:

因为euler( euler(x) ) <= x/2 所以在log(x)次内欧拉函数值就会降为1,并且一直为1.而任何数对1取模的答案都是0,所以我们可以遇见模数为1时就可以结束迭代,

  • 因此每次询问最多迭代log(m)次,每一次迭代只需要一个快速幂的时间复杂度,也是log(m)

  • 因此对于每一个询问综合的时间复杂度是O(log(m)^2)

    注意,在指数循环节中快速幂时,需要在ans>=mod时,取模后再加上mod,以此才满足欧拉降幂定理。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll mod(ll x, ll m)
{
return x >= m ? x % m + m : x;
}
ll powmod(ll a, ll b, ll MOD)
{
ll ans = 1;
while (b)
{
if (b % 2)
ans = mod(ans * a, MOD);
// ans = ans * a % MOD;
// a = a * a % MOD;
a = mod(a * a, MOD);
b /= 2;
}
return ans;
} ll m;
int n;
int q;
ll a[maxn];
map<ll, ll> vis;
ll euler(ll n) { //log(n)时间内求一个数的欧拉值
if (vis.count(n))
{
return vis[n];
}
ll ans = n;
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0)
{
ans -= ans / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) ans -= ans / n;
vis[n] = ans;
return ans;
} ll solve(int l, int r, ll m)
{
if (l == r || m == 1)
return mod(a[r], m);
return powmod(a[l], solve(l + 1, r, euler(m)), m);
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
// gbtb;
// cin >> n >> m;
scanf("%d%lld", &n, &m);
repd(i, 1, n)
{
scanf("%lld", &a[i]);
// cin >> a[i];
}
// cin >> q;
scanf("%d", &q);
int l, r;
while (q--)
{
scanf("%d %d", &l, &r);
printf("%lld\n", solve(l, r, m) % m);
// cin >> l >> r;
// cout << solve(l, r, m) % m << endl;
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Round #454 D. Power Tower (广义欧拉降幂)的更多相关文章

  1. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  2. Power Tower(广义欧拉降幂)

    题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...

  3. ACM-数论-广义欧拉降幂

    https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...

  4. 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759

    广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...

  5. CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)

    Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...

  6. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  7. The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)

    In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...

  8. BZOJ 3884——欧拉降幂和广义欧拉降幂

    理论部分 欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$. 降幂公式: $$a^b=\begin{cases}a^ ...

  9. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

随机推荐

  1. Mrchen测试人生

    auto:chenyq date:20190920 data:今天是我从事10年IT软件测试工作来的 开始写技术博客的第一次,希望今后能给互联网需要查询技术知识带来方便: 说起我的测试人生 路也走了1 ...

  2. D3学习之坐标系绘制

    坐标轴的绘制我们需要搞清楚以下三个要点: 1).axis函数 2)..call()函数用于组合 3).坐标轴的平移旋转 关于第三点其实就是"transform","tra ...

  3. 【VS开发】【C/C++开发】传递双重指针申请内存,典型用法

    传递双重指针申请内存,典型用法 指针参数是如何传递内存的? 如果函数的参数是一个指针,不要指望用该指针去申请动态内存.如下示例中,Test函数的语句GetMemory(str, 100)并没有使str ...

  4. 【Java开发】Maven那点事儿(Eclipse版)

    Maven那点事儿(Eclipse版) 前言: 由于最近工作学习,总是能碰到Maven的源码.虽然平时工作并不使用Maven,但是为了学习一些源码,还是必须要了解下.这篇文章不是一个全面的Maven解 ...

  5. C学习笔记-数据类型

    常量 在程序中不可变化的量,也就不可赋值 常用两种定义方式,#define和const 另外还有一个字符串常量 define #define MAX 100 #define在预编译的时候,其实也是做的 ...

  6. vue 基础介绍

    0.MVVM 什么是MVVM?就是Model-View-ViewModel. ViewModel是Vue.js的核心,它是一个Vue实例. 1.基础示例 代码: <!DOCTYPE html&g ...

  7. 非阻塞IO可以等同异步IO嘛?

    脑壳短路的一瞬间,黑人问号? 在这个问题之前,我们先了解下IO的过程,下图是异步IO,做个参照(图片随便找的,侵权联系小弟删除) 简单叙述下windows同步IO的流程(图片描述的是异步IO) 1.调 ...

  8. Design HashMap

    Design a HashMap without using any built-in hash table libraries. To be specific, your design should ...

  9. idea的配置文件------application.properties和application.yml

    当application.yml 和 application.properties 两个文件同时存在的时候,application.properties的优先级是高于application.yml的, ...

  10. GIL全局解释器

    ' GIL是一个互斥锁:保证数据的安全(以牺牲效率来换取数据的安全) 阻止同一个进程内多个线程同时执行(不能并行但是能够实现并发) 并发:看起来像同时进行的 GIL全局解释器存在的原因是因为CPyth ...