LESSON 7- High Rate Quantizers and Waveform Encoding
1. The Lloyd-Max algorithm is hill-climbing algorithm
第六节最后提出一个好的quantizer必须满足Lloyd-Max条件,但满足Lloyd-Max条件的不一定都是最优方案,举个例子:
It can be seen in the figure that the rightmost peak is more probable than the other peaks. It follows that the MSE would be lower if R1 covered the two leftmost peaks. However, in this figure, the two rightmost peaks are both covered by R2, with the point a2 between them. Both the points and the regions satisfy the necessary conditions and cannot be locally improved.
从哪里开始分会得到不同的结果,局部优不代表结果最优。The Lloyd-Max algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of values, these values are modified until reaching the top of a hill where no more local improvements are possible.
2. Vector quantization
As with source coding of discrete sources, we next consider quantizing n source variables at a time. This is called vector quantization, since an n-tuple of rv’s may be regarded as a vector rv in an n-dimensional vector space.
Let (U, U) be the two rv’s being jointly quantized. Since mapping (u, u’) into (aj, aj’) generates a squared error equal to (u−aj )² + (u’−aj’)², the point (aj, aj’) which is closest to (u, u’) in Euclidean distance should be chosen. Consequently, the region Rj must be the set of points (u, u’) that are closer to (aj, aj’) than to any other representation point.
For the given representation points, the regions {Rj} are minimum-distance regions and are called Voronoi regions. The boundaries of the Voronoi regions are perpendicular bisectors(垂直平分线) between neighboring representation points. The minimum-distance regions are thus in general convex polygonal regions(凸多边形), as illustrated in the figure below:
3. Entropy-coded quantization
The minimum expected number of bits per symbol, Lmin, required to encode the quantizer output was shown in Chapter 2 to be governed by the entropy H[V ] of the quantizer output, not by the size M of the quantization alphabet. Therefore, anticipating efficient source coding of the quantized outputs, we should really try to minimize the MSE for a given entropy H[V ] rather than a given number of representation points.
This can be minimized over ∆1 and ∆2 subject to the constraint that M = M1 + M2 = L1/∆1 + L2/∆2. Ignoring the constraint that M1 and M2 are integers (which makes sense for M large), the minimum MSE occurs when ∆i is chosen inversely proportional to the cube root of fi. In other words,
Appendix 3 shows that, in the limit of high rate, the quantization intervals all have the same length! A scalar quantizer in which all intervals have the same length is called a uniform scalar quantizer. The following sections will show that uniform scalar quantizers have remarkable properties for high-rate quantization.
4. High-rate entropy-coded quantization
The quantization regions can be made sufficiently small so that the probability density is approximately constant within each region.
This means that a uniform quantizer can be used as a universal quantizer with very little loss of optimality. The probability distribution of the rv’s to be quantized can be exploited at the level of discrete source coding.
The analogue of the entropy H[X] of a discrete rv is the differential entropy h[U] of an analog rv. After defining h[U],the properties of H[U] and h[U] will be compared.
5. Differential entropy
The differential entropy h[U] of an analog random variable (rv) U is analogous to the entropy H[X] of a discrete random symbol X.
LESSON 7- High Rate Quantizers and Waveform Encoding的更多相关文章
- Spring特性--DI
DI:Dependency Injection(依赖注入),通俗的讲就是一种通过xml配置文件,为交给sping容器的对象初始化参数.又称做控制反转:Inversion of Control(IoC) ...
- ITU-T G.1080 IPTV的体验质量(QoE)要求 (Quality of experience requirements for IPTV services)
IPTV的服务质量(QoE)要求 Quality of experience requirements for IPTV services Summary This Recommendation de ...
- JSP中文乱码问题的由来以及解决方法
首先明确一点,在计算机中,只有二进制的数据! 一.java_web乱码问题的由来 1.字符集 1.1 ASCII字符集 在早期的计算机系统中,使用的字符非常少,这些字符包括26个英文字母.数字符号和一 ...
- Linux 对音频万能处理的命令——SOX
what's the SOX SoX(即 Sound eXchange)是一个跨平台(Windows,Linux,MacOS 等)的命令行实用程序,可以将各种格式的音频文件转换为需要的 ...
- <爬虫>黑板爬虫闯关01
import requests from lxml import etree import time ''' 黑板爬虫闯关 网址:http://www.heibanke.com/lesson/craw ...
- LESSON 2-Discrete Source Encoding
Keywords: Source types, Discrete source coding, Kraft inequality 1. Source classes About Figure ...
- [ZZ] RGBM and RGBE encoding for HDR
Deferred lighting separate lighting rendering and make lighting a completely image-space technique. ...
- 【Android Training UI】创建自定义Views(Lesson 0 - 章节概览)
发表在我的独立网站http://kesenhoo.github.io/blog/2013/06/30/android-training-ui-creating-custom-views-lesson- ...
- [转]Introduction to Core Bluetooth: Building a Heart Rate Monitor
ref:http://www.raywenderlich.com/52080/introduction-core-bluetooth-building-heart-rate-monitor The C ...
随机推荐
- pycharm同一目录下无法import其他文件
如图:会出现带有红色波浪线,但是确实有random_walk文件 解决方法: 在当前文件下,右键找到mark Directory as 然后选择source root,完工ok 再如图: 版权声明: ...
- [JZOJ6345]:ZYB建围墙(数学+构造)
题目描述 $ZYB$之国是特殊的六边形构造. 已知王国一共有$N$户家庭,每个家庭需占据一个不同的六边形格子. 王国里交流很频繁,所以这些家庭要构成一个连通区域:同时出于安全考虑,国王$ZYB$想在外 ...
- 7. 使用Hystrix实现微服务的容错处理
使用Hystrix实现微服务的容错处理 7.1. 实现容错的手段 7.1.1. 雪崩效应 在微服务架构中通常会有多个服务层调用,基础服务的故障可能会导致级联故障,进而造成整 ...
- GDB之常见错误
1. dl-debug.c:74: No such file or directory. 如上图,当使用 gdb 调试执行 r 时,会出现如上打印. 解决方法如下: apt-get install e ...
- Flutter打开第三方应用
在flutter中打开第三方应用可以使用url_launcher插件 打开https://pub.dartlang.org/,然后搜索url_launcher,然后点击进入该插件界面 大家在insta ...
- Flutter移动电商实战 --(11)首页_屏幕适配方案和制作
1.flutter_ScreenUtil插件简介 flutter_ScreenUtil屏幕适配方案,让你的UI在不同尺寸的屏幕上都能显示合理的布局. 插件会让你先设置一个UI稿的尺寸,他会根据这个尺寸 ...
- [MyBatis]完整MyBatis CRUD工程
下载地址:https://files.cnblogs.com/files/xiandedanteng/Person191005.rar pom.xml:这个文件主要是引入依赖 <project ...
- linux下如何查看当前内核的配置?
答: zcat /proc/config.gz 当然有个前提条件,需要打开内核的以下两个选项(CONFIG_IKCONFIG和CONFIG_IKCONFIG_PROC): General setup ...
- 图解Python 【第五篇】:面向对象-类-初级基础篇
由于类的内容比较多,分为类-初级基础篇和类-进阶篇 类的内容总览图: 本节主要讲基础和面向对象的特性 本节内容一览图: 前言总结介绍: 面向对象是一种编程方式,此编程方式的实现是基于对 类 和 对象 ...
- js获取后台传给前台的值
1.后台传给前台的方法 String rulemodeid=req.getParameter("rulemodeid"); req.setAttribute("rulem ...