链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5446

题意:

On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.

思路:

lucas定理,p为素数时。

C(n, m) = C(n/p, m/p)+C(n%p, m%p).

对每个pi算出值,然后中国剩余定理求解。

因为数值较大。。很容易溢出,快速乘,顺序也会导致溢出。。

求逆元的时候,用快速幂会溢出,可以把快速幂里面的乘法用快速乘。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector> using namespace std;
typedef long long LL;
const int INF = 1e9; const int MAXN = 1e5+10;
const int MOD = 1e9+7; LL F[MAXN], Finv[MAXN];
LL P[MAXN], A[MAXN]; LL MulMod(LL a, LL b, LL mod)
{
LL res = 0;
while(b>0)
{
if (b&1)
res = (res+a)%mod;
a = (a+a)%mod;
b >>= 1;
}
return res;
} LL PowMod(LL a, LL b, LL mod)
{
LL res = 1;
while(b>0)
{
if (b&1)
res = res*a%mod;
a = a*a%mod;
b >>= 1;
}
return res;
} void Init(LL n, LL m, LL mod)
{
F[0] = F[1] = 1;
for (LL i = 2;i <= n;i++)
F[i] = F[i-1]*i%mod;
Finv[m] = PowMod(F[m], mod-2, mod);
Finv[n-m] = PowMod(F[n-m], mod-2, mod);
} LL Comb(LL n, LL m, LL mod)
{
if (m > n)
return 0;
if (m == n)
return 1;
Init(n, m, mod);
return F[n]*Finv[m]%mod*Finv[n-m]%mod;
} LL Lucas(LL n, LL m, LL mod)
{
if (m == 0)
return 1;
return MulMod(Lucas(n/mod, m/mod, mod), Comb(n%mod, m%mod, mod), mod);
} void ExGCD(LL a, LL b, LL &x, LL &y)
{
if (b == 0)
{
x = 1, y = 0;
return;
}
ExGCD(b, a%b, x, y);
LL tmp = x;
x = y;
y = tmp-a/b*y;
} LL CRT(int k)
{
LL Pm = 1;
LL res = 0;
for (int i = 1;i <= k;i++)
Pm *= P[i];
for (int i = 1;i <= k;i++)
{
LL x, y;
LL mi = Pm/P[i];
ExGCD(mi, P[i], x, y);
res = (res+MulMod(MulMod(x, mi, Pm), A[i], Pm))%Pm;
}
return (res+Pm)%Pm;
} int main()
{
int t, k;
LL n, m;
scanf("%d", &t);
while(t--)
{
scanf("%lld%lld%d", &n, &m, &k);
for (int i = 1;i <= k;i++)
scanf("%lld", &P[i]);
for (int i = 1;i <= k;i++)
A[i] = Lucas(n, m, P[i]);
printf("%lld\n", CRT(k)); } return 0;
}

HDU-5446-UnknownTreasure(组合数,中国剩余定理)的更多相关文章

  1. hdu 5446 Unknown Treasure 中国剩余定理+lucas

    题目链接 求C(n, m)%p的值, n, m<=1e18, p = p1*p2*...pk. pi是质数. 先求出C(n, m)%pi的值, 然后这就是一个同余的式子. 用中国剩余定理求解. ...

  2. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  3. hdu X问题 (中国剩余定理不互质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

  4. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  5. HDU 3579 Hello Kiki 中国剩余定理(合并方程

    题意: 给定方程 res % 14 = 5 res % 57 = 56 求res 中国剩余定理裸题 #include<stdio.h> #include<string.h> # ...

  6. hdu 3579 Hello Kiki (中国剩余定理)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. POJ 2891 Strange Way to Express Integers 中国剩余定理解法

    一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-p ...

  8. 中国剩余定理&Lucas定理&按位与——hdu 5446

    链接: hdu 5446 http://acm.hdu.edu.cn/showproblem.php?pid=5446 题意: 给你三个数$n, m, k$ 第二行是$k$个数,$p_1,p_2,p_ ...

  9. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  10. HDU 5446 Unknown Treasure(lucas + 中国剩余定理 + 模拟乘法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 题目大意:求C(n, m) % M, 其中M为不同素数的乘积,即M=p1*p2*...*pk, ...

随机推荐

  1. [转帖]Kubernetes - nginx-ingress 配置跳坑指南

    Kubernetes - nginx-ingress 配置跳坑指南 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https:// ...

  2. [转帖]04-创建kubeconfig认证文件

    04-创建kubeconfig认证文件 https://www.cnblogs.com/guigujun/p/8366530.html 学习一下 貌似挺有用的. 本文档记录自己的学习历程! 创建 ku ...

  3. Web基础和servlet基础

    TomCat的目录结构 Bin:脚本目录(存放启动.关闭这些命令) Conf:存放配置文件的目录 Lib:存放jar包 Logs: 存放日志文件 Temp: 临时文件 Webapps: 项目发布目录 ...

  4. List集合转换为数组类型方法

    list集合转换为数组可以使用list集合的toArray(T[] a)方法, topicDetailsVo.setUrl(urls.toArray(new String[]{})); url是个数组 ...

  5. PB自动换行

    1.在DataWindow Painter中打开DataWindow; 2.在需设定自动折行的列上单击, 查看右侧的属性窗口: 3.点击Position标签, 选中Autosize Height 多选 ...

  6. javascript之typeof

    定义和用法

  7. Markdown语法图文全面详解(转)

    基本语法参考    转自:https://blog.csdn.net/u014061630/article/details/81359144 更改字体.颜色.大小,设置文字背景色,调整图片大小设置居中 ...

  8. POJ 3233-Matrix Power Series( S = A + A^2 + A^3 + … + A^k 矩阵快速幂取模)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 20309   Accepted:  ...

  9. FTP搭建注意事项

    正常的FTP搭建步骤很简单,随便网搜一篇文章就出来了 下面提出一个网址可供学习 https://blog.csdn.net/m0_38044299/article/details/81627607 但 ...

  10. DevExtreme学习笔记(一) DataGrid中js分析

    1.overviewjs采用 $(function() { $("#gridContainer").dxDataGrid({ dataSource: { store: { type ...