「数据结构与算法(Python)」(一)
算法的提出
算法的概念
算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。
算法是独立存在的一种解决问题的方法和思想。
对于算法而言,实现的语言并不重要,重要的是思想。
算法可以有不同的语言描述实现版本(如C描述、C++描述、Python描述等),我们现在是在用Python语言进行描述实现。
算法的五大特性
- 输入: 算法具有0个或多个输入
- 输出: 算法至少有1个或多个输出
- 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
- 确定性:算法中的每一步都有确定的含义,不会出现二义性
- 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成
算法效率衡量
执行时间反应算法效率
对于同一问题,我们给出了两种解决算法,在两种算法的实现中,我们对程序执行的时间进行了测算,发现两段程序执行的时间相差悬殊(214.583347秒相比于0.182897秒),由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣。
单靠时间值绝对可信吗?
假设我们将第二次尝试的算法程序运行在一台配置古老性能低下的计算机中,情况会如何?很可能运行的时间并不会比在我们的电脑中运行算法一的214.583347秒快多少。
单纯依靠运行的时间来比较算法的优劣并不一定是客观准确的!
程序的运行离不开计算机环境(包括硬件和操作系统),这些客观原因会影响程序运行的速度并反应在程序的执行时间上。那么如何才能客观的评判一个算法的优劣呢?
时间复杂度与“大O记法”
我们假定计算机执行算法每一个基本操作的时间是固定的一个时间单位,那么有多少个基本操作就代表会花费多少时间单位。算然对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。
对于算法的时间效率,我们可以用“大O记法”来表示。
“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。
时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)
如何理解“大O记法”
对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。
最坏时间复杂度
分析算法时,存在几种可能的考虑:
- 算法完成工作最少需要多少基本操作,即最优时间复杂度
- 算法完成工作最多需要多少基本操作,即最坏时间复杂度
- 算法完成工作平均需要多少基本操作,即平均时间复杂度
对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。
对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。
因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。
时间复杂度的几条基本计算规则
- 基本操作,即只有常数项,认为其时间复杂度为O(1)
- 顺序结构,时间复杂度按加法进行计算
- 循环结构,时间复杂度按乘法进行计算
- 分支结构,时间复杂度取最大值
- 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
- 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
常见时间复杂度
执行次数函数举例 | 阶 | 非正式术语 |
---|---|---|
12 | O(1) | 常数阶 |
2n+3 | O(n) | 线性阶 |
3n2+2n+1 | O(n2) | 平方阶 |
5log2n+20 | O(logn) | 对数阶 |
2n+3nlog2n+19 | O(nlogn) | nlogn阶 |
6n3+2n2+3n+4 | O(n3) | 立方阶 |
2n | O(2n) | 指数阶 |
注意,经常将log2n(以2为底的对数)简写成logn
常见时间复杂度之间的关系
所消耗的时间从小到大
O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)
数据结构
我们为了解决问题,需要将数据保存下来,然后根据数据的存储方式来设计算法实现进行处理,那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好,于是我们就需要考虑数据究竟如何保存的问题,这就是数据结构。
在上面的问题中我们可以选择Python中的列表或字典来存储学生信息。列表和字典就是Python内建帮我们封装好的两种数据结构。
概念
数据是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系便是结构。数据结构指数据对象中数据元素之间的关系。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。
算法与数据结构的区别
数据结构只是静态的描述了数据元素之间的关系。
高效的程序需要在数据结构的基础上设计和选择算法。
程序 = 数据结构 + 算法
总结:算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体
抽象数据类型(Abstract Data Type)
抽象数据类型(ADT)的含义是指一个数学模型以及定义在此数学模型上的一组操作。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。
最常用的数据运算有五种:
- 插入
- 删除
- 修改
- 查找
- 排序
(来源:https://www.bilibili.com/video/av21540971/)
「数据结构与算法(Python)」(一)的更多相关文章
- 数据结构与算法-Python/C(目录)
第一篇 基本概念 01 什么是数据结构 02 什么是算法 03 应用实例-最大子列和问题 第二篇 线性结构 01 线性表及其实现 02 堆栈 03 队列 04 应用实例-多项式加法运算 05 小白专场 ...
- 北京大学公开课《数据结构与算法Python版》
之前我分享过一个数据结构与算法的课程,很多小伙伴私信我问有没有Python版. 看了一些公开课后,今天特向大家推荐北京大学的这门课程:<数据结构与算法Python版>. 课程概述 很多同学 ...
- 【数据结构与算法Python版学习笔记】引言
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...
- 数据结构与算法(Python)
一.数据结构与算法概述 数据结构与算法的定义 我们把现实中大量而且非常复杂的问题以特定的数据类型(个体)和特定的存储结构(个体的关系)保存到相应的主存储器(内存)中,以及在此基础上为实现某个功能而执行 ...
- 「数据结构与算法(Python)」(二)
顺序表 在程序中,经常需要将一组(通常是同为某个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录它们,传进传出函数等.一组数据中包含的元素个数可能发生变化(可以增加或删除元素). 对 ...
- 「数据结构与算法之链表(Python)」(四)
什么是链表 顺序表的储存分为一体式结构和分离式结构,但总的来说存储数据的内存是一块连续的单元,每次申请前都要预估所需要的内存空间大小.这样就不能随意的增加我们需要的数据了.链接就是为了解决这个问题.它 ...
- 「数据结构与算法(Python)」(三)
栈结构实现 栈可以用顺序表实现,也可以用链表实现. 栈的操作 Stack() 创建一个新的空栈 push(item) 添加一个新的元素item到栈顶 pop() 弹出栈顶元素 peek() 返回栈顶元 ...
- 学习笔记:[算法分析]数据结构与算法Python版[基本的数据结构-上]
线性结构Linear Structure ❖线性结构是一种有序数据项的集合,其中 每个数据项都有唯一的前驱和后继 除了第一个没有前驱,最后一个没有后继 新的数据项加入到数据集中时,只会加入到原有 某个 ...
- 【数据结构与算法Python版学习笔记】查找与排序——散列、散列函数、区块链
散列 Hasing 前言 如果数据项之间是按照大小排好序的话,就可以利用二分查找来降低算法复杂度. 现在我们进一步来构造一个新的数据结构, 能使得查找算法的复杂度降到O(1), 这种概念称为" ...
随机推荐
- Java程序的编写与执行、Java新手常见问题及解决方法|乐字节Java学习
今天,我们来写一段Java程序.然后看看Java程序是如何执行的,以及Java新手小白遇到的问题和解决办法. 一.HelloWorld的编写 ① 新建一个XXX.java (文件的扩展名显示出来) ...
- python 脚本备份mssql数据库并删除数据库
一.实现脚本 # -*- coding=utf-8 -*- import pyodbc from datetime import datetime import pymssql import os i ...
- Appium 基于控件左滑操作
def swipe_ele_left(self, ele, dur=800): """ 基于控件元素左滑操作 :param ele: 控件元素 :param dur: 在 ...
- c# 面向对象/继承关系设计
继承 RTTI RTTI 概念 RTTI(Run Time Type Identification)即通过运行时类型识别,程序能够使用基类的指针或引用来检查着这些指针或引用所指的对象的实际派生类型. ...
- Python 实现把两个排好序的的列表合并成一个排序列表
列表是升序的 # -*- coding: utf-8 -*- # 合并两个排序的数组 def merge_list(a, b): if not a: return b if not b: return ...
- TypeScript 枚举
我们常常会有这样的场景,比如与后端开发约定订单的状态开始是0,未结账是1,运输中是2,运输完成是3,已收货是4.这样的纯数字会使得代码缺乏可读性.枚举就用于这样的场景.枚举可以让我们定义一些名字有意义 ...
- (十)EL表达式和JSTL标签快速入门
目录 什么是 el 表达式 示例:使用EL表达式获取pageContext .request.session.application域中的数据: 示例:使用EL表达式获取Bean属性 获取当前WEB应 ...
- C/C+面试题一:找出字符串中出现最多的字符和次数,时间复杂度小于O(n^2)
已知字符串"aabbbcddddeeffffghijklmnopqrst"编程找出出现最多的字符和次数,要求时间复杂度小于O(n^2) /********************* ...
- 使用Laravel 和 Vue 构建一个简单的SPA
本教程是作者自己在学习Laravel和Vue时的一些总结,有问题欢迎指正. Laravel是PHP的一个框架,Vue是前端页面的框架,这两个框架如何结合起来构建一个SPA(Single Page Ap ...
- 十大经典算法 Python实现
十大经典排序算法(python实现)(原创) 使用场景: 1,空间复杂度 越低越好.n值较大: 堆排序 O(nlog2n) O(1) 2,无空间复杂度要求.n值较大: 桶排序 O(n+k) O(n+k ...