实现方式

以 ℓ2 Regularization 为例,主要有两种实现方式

1. 手动累加

with tf.name_scope('loss'):
loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot
l2_reg_loss = tf.constant(0.0, tf.float32)
for vv in tf.trainable_variables():
if 'bn' in vv.name or 'batchnorm' in vv.name or 'batch_norm' in vv.name \
or 'batch_normalization' in vv.name or 'gn' in vv.name:
continue
else:
l2_reg_loss = tf.add(l2_reg_loss, tf.nn.l2_loss(vv))
l2_reg_loss *= 0.001
loss = loss + l2_reg_loss

2. 借助于 kernel_regularizer

with tf.name_scope('dnn'):
hidden1 = tf.layers.dense(X, 300, kernel_initializer=he_init, name='hidden1',
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001))
...... with tf.name_scope('loss'):
loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = tf.add_n([loss] + reg_losses)

实例验证

import tensorflow as tf

# 1. create data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) X = tf.placeholder(tf.float32, shape=(None, 784), name='X')
y = tf.placeholder(tf.int32, shape=(None), name='y')
is_training = tf.placeholder(tf.bool, None, name='is_training') # 2. define network
he_init = tf.contrib.layers.variance_scaling_initializer()
with tf.name_scope('dnn'):
hidden1 = tf.layers.dense(X, 300, kernel_initializer=he_init, name='hidden1',
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001))
hidden1 = tf.layers.batch_normalization(hidden1, momentum=0.9)
hidden1 = tf.nn.relu(hidden1)
hidden2 = tf.layers.dense(hidden1, 100, kernel_initializer=he_init, name='hidden2',
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001))
hidden2 = tf.layers.batch_normalization(hidden2, training=is_training, momentum=0.9)
hidden2 = tf.nn.relu(hidden2)
logits = tf.layers.dense(hidden2, 10, kernel_initializer=he_init, name='output',
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001)) # 3. define loss
with tf.name_scope('loss'):
loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot
# =================
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_loss = tf.reduce_sum(reg_losses)
# loss = tf.add_n([loss] + reg_losses)
# =================
l2_reg_loss = tf.constant(0.0, tf.float32)
for vv in tf.trainable_variables():
if 'bn' in vv.name or 'batchnorm' in vv.name or 'batch_norm' in vv.name \
or 'batch_normalization' in vv.name or 'gn' in vv.name:
continue
else:
l2_reg_loss = tf.add(l2_reg_loss, tf.nn.l2_loss(vv))
l2_reg_loss *= 0.001
# loss = loss + l2_reg_loss
# ================= # 4. define optimizer
learning_rate_init = 0.01
global_step = tf.Variable(0, trainable=False)
with tf.name_scope('train'):
learning_rate = tf.train.polynomial_decay( # 多项式衰减
learning_rate=learning_rate_init, # 初始学习率
global_step=global_step, # 当前迭代次数
decay_steps=22000, # 在迭代到该次数实际,学习率衰减为 learning_rate * dacay_rate
end_learning_rate=learning_rate_init / 10, # 最小的学习率
power=0.9,
cycle=False
)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for batch normalization
with tf.control_dependencies(update_ops):
optimizer_op = tf.train.MomentumOptimizer(
learning_rate=learning_rate, momentum=0.9).minimize(
loss=loss,
var_list=tf.trainable_variables(),
global_step=global_step # 不指定的话学习率不更新
) with tf.name_scope('eval'):
correct = tf.nn.in_top_k(logits, tf.argmax(y, axis=1), 1) # 目标是否在前K个预测中, label's dtype is int*
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # 5. initialize
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver() # 5. train & test
n_epochs = 1
batch_size = 55000
with tf.Session() as sess:
saver.restore(sess, './my_model_final.ckpt')
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
loss_, l2_reg_loss_, reg_loss_ = sess.run([loss, l2_reg_loss, reg_loss], feed_dict={X: X_batch, y: y_batch, is_training:True})
acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch, is_training:False}) # 最后一个 batch 的 accuracy
acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
l2_reg_loss_test = l2_reg_loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
reg_loss_test = reg_loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
print("Train loss:", loss_, "Train l2_reg_loss:", l2_reg_loss_, "Train reg_loss:", reg_loss_, "Train accuracy:", acc_train)
print("Test loss:", loss_test, "Test l2_reg_loss:", l2_reg_loss_test, "Test reg_loss:", reg_loss_test, "Test accuracy:", acc_test) """
# =================
Train loss: 0.000636433 Train l2_reg_loss: 0.48696715 Train reg_loss: 0.48683384 Train accuracy: 1.0
Test loss: 0.059231624 Test l2_reg_loss: 0.48696715 Test reg_loss: 0.48683384 Test accuracy: 0.983
"""

TensorFlow使用记录 (十二): ℓ1 and ℓ2 Regularization的更多相关文章

  1. Spring学习记录(十二)---AOP理解和基于注解配置

    Spring核心之二:AOP(Aspect Oriented Programming) --- 面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软 ...

  2. TensorFlow使用记录 (十四): Multi-task to MNIST + Fashion MNIST

    前言 后面工作中有个较重要的 task 是将 YOLOV3 目标检测和 LanNet 车道线检测和到一个网络中训练,特别的是,这两部分数据来自于不同的数据源.这和我之前在 caffe 环境下训练检测整 ...

  3. TensorFlow使用记录 (十): Pretraining

    上一篇的模型保存和恢复熟练后,我们就可以大量使用 pretrain model 来训练任务了 Tweaking, Dropping, or Replacing the Upper Layers The ...

  4. TensorFlow 学习(十二)—— 高级函数

    tf.map_fn(fn, elems):接受一个函数对象,然后用该函数对象对集合(elems)中的每一个元素分别处理, def preprocessing_image(image, training ...

  5. 第十二篇 Integration Services:高级日志记录

    本篇文章是Integration Services系列的第十二篇,详细内容请参考原文. 简介在前一篇文章我们配置了SSIS内置日志记录,演示了简单和高级日志配置,保存并查看日志配置,生成自定义日志消息 ...

  6. 【译】第十二篇 Integration Services:高级日志记录

    本篇文章是Integration Services系列的第十二篇,详细内容请参考原文. 简介在前一篇文章我们配置了SSIS内置日志记录,演示了简单和高级日志配置,保存并查看日志配置,生成自定义日志消息 ...

  7. Tensorflow深度学习之十二:基础图像处理之二

    Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474   首先放出原始图像: ...

  8. 我的MYSQL学习心得(十二) 触发器

    我的MYSQL学习心得(十二) 触发器 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数 ...

  9. 解剖SQLSERVER 第十二篇 OrcaMDF 行压缩支持(译)

    解剖SQLSERVER 第十二篇   OrcaMDF 行压缩支持(译) http://improve.dk/orcamdf-row-compression-support/ 在这两个月的断断续续的开发 ...

随机推荐

  1. python基础知识0-5(单双向队列)

    #多项队列import collections #导入模块d = collections.deque() #deque方法d.append('1') #添加元素d.appendleft('2')d.a ...

  2. X86逆向5:破解程序的自效验

    在软件的破解过程中,经常会遇到程序的自效验问题,什么是自效验?当文件大小发生变化,或者MD5特征变化的时候就会触发自效验暗装,有些暗装是直接退出,而有些则是格盘蓝屏等,所以在调试这样的程序的时候尽量在 ...

  3. java正则表达式的使唤

    示例代码: package com.target.start; import java.util.regex.Matcher; import java.util.regex.Pattern; /* * ...

  4. 数据结构-二叉搜索树Java实现

    1,Node.java 生成基础二叉树的结构 package com.cnblogs.mufasa.searchTree; /** * 节点配置父+左+右 */ public class Node{ ...

  5. java——ArrayList中contains()方法中的疑问

    问题引子: ist<Student> students=new ArrayList<Student>(); students.add(new Student("201 ...

  6. C# 常用类库说明

    Array类 用括号声明数组是C#中使用Array类的记号.在后台使用C#语法,会创建一个派生于抽象基类Array的新类.这样,就可以使用Array类为每个C#数组定义的方法和属性了. Array类实 ...

  7. Django: ORM 数据库设置和读写分离

    一.Django的数据库配置 (一)修改settings.py文件关于数据库的配置: Django默认使用sqlite: # Django默认的数据库库,SQLit配置 DATABASES = { ' ...

  8. JavaScript例子3-对多选框进行操作,输出选中的多选框的个数

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. css强制换行显示省略号之显示两行后显示省略号

    1,首先来一个固定宽度,在一行显示,超出隐藏,显示省略号的样式 display:block; white-space:nowrap; overflow:hidden; text-overflow:el ...

  10. ASE19团队项目alpha阶段model组 scrum2 记录

    本次会议于11月4日,19时整在微软北京西二号楼sky garden召开,持续25分钟. 与会人员:Jiyan He, Kun Yan, Lei Chai, Linfeng Qi, Xueqing W ...