On a plane there are n points with integer coordinates points[i] = [xi, yi]. Your task is to find the minimum time in seconds to visit all points.

You can move according to the next rules:

  • In one second always you can either move vertically, horizontally by one unit or diagonally (it means to move one unit vertically and one unit horizontally in one second).
  • You have to visit the points in the same order as they appear in the array.

Example 1:

Input: points = [[1,1],[3,4],[-1,0]]
Output: 7
Explanation: One optimal path is [1,1] -> [2,2] -> [3,3] -> [3,4] -> [2,3] -> [1,2] -> [0,1] -> [-1,0]
Time from [1,1] to [3,4] = 3 seconds
Time from [3,4] to [-1,0] = 4 seconds
Total time = 7 seconds

Example 2:

Input: points = [[3,2],[-2,2]]
Output: 5

Constraints:

  • points.length == n
  • 1 <= n <= 100
  • points[i].length == 2
  • -1000 <= points[i][0], points[i][1] <= 1000

思路:为了计算两个点的最短时间对应的路径,我们应该尽量走对角,比如(1, 1) 到 (3, 4), 通过走对角方式(1, 1) -> (2, 2) -> (3, 3) -> (3, 4), 不能直接从(1, 1)到 (3, 4), 会先走3对角,在往垂直方向1。

针对(x1, y1) -> (x2, y2), 水平方向 |x2 - x1|, 垂直方向|y2 - y1|, 走对角 min(|x2 - x1|, |y2 - y1|), 走水平或垂直max(|x2 - x1|, |y2 - y1|) - min(|x2 - x1|, |y2 - y1|), 加起来为max(|x2 - x1|, |y2 - y1|,

根据题意,可以直接贪心思想,求出相邻两点的时间,并累加。

 class Solution {
public:
int minTimeToVisitAllPoints(vector<vector<int>>& points) {
int cnt = ;
for (int i = ; i < points.size(); ++i) {
cnt += max(abs(points[i][] - points[i - ][]), abs(points[i][] - points[i - ][]));
}
return cnt;
}
};

leetcode 1266. Minimum Time Visiting All Points的更多相关文章

  1. 【leetcode】1266. Minimum Time Visiting All Points

    题目如下: On a plane there are n points with integer coordinates points[i] = [xi, yi]. Your task is to f ...

  2. LeetCode 5271. 访问所有点的最小时间 Minimum Time Visiting All Points

    地址 https://leetcode-cn.com/problems/minimum-time-visiting-all-points/submissions/ 题目描述平面上有 n 个点,点的位置 ...

  3. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  4. Leetcode Find Minimum in Rotated Sorted Array 题解

    Leetcode Find Minimum in Rotated Sorted Array 题目大意: 对一个有序数组翻转, 就是随机取前K个数,移动到数组的后面,然后让你找出最小的那个数.注意,K有 ...

  5. Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)

    Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...

  6. [LeetCode] 727. Minimum Window Subsequence 最小窗口子序列

    Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof  ...

  7. [Leetcode Week10]Minimum Time Difference

    Minimum Time Difference 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/minimum-time-difference/desc ...

  8. [LeetCode] 452. Minimum Number of Arrows to Burst Balloons 最少箭数爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  9. [LeetCode] Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值之二

    Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are allowed? Would ...

随机推荐

  1. 20191114-4 Beta发布用户使用报告

    20191114-4 Beta发布用户使用报告 此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/10007 组名:胜利点 组 ...

  2. git一键push至github脚本

    ######################################################################### # File Name: push.sh # Aut ...

  3. EasyUI中对于Grid的隐藏与显示

    $('#div_Grid').datagrid('hideColumn', 'mtnDate'); $('#div_Grid').datagrid('showColumn', 'mtnDate');

  4. Windows 设置定时任务

    cmd 运行 control 命令打开控制面板,找到 管理工具 -> 任务计划程序 一.添加定时任务 创建任务 基本信息 触发器,这里设置开机启动 操作,这里执行一个程序.若为脚本,注意起始于路 ...

  5. leetcode 1278 分割回文串

    time O(n^2*k)  space O(n^2) class Solution { public: int palindromePartition(string s, int K) { //分成 ...

  6. OpenStack Blazar 架构解析与功能实践

    目录 文章目录 目录 Blazar Blazar 的安装部署 Blazar 的软件架构 Blazar 的资源模型与状态机 Blazar 的主机资源预留功能(Host Reservation) 代码实现 ...

  7. Selenium 2自动化测试实战23(窗口截图)

    一.窗口截图 WebDriver提供了截图函数get_screenshot_as_file()来截取当前窗口. # -*- coding: utf-8 -*- from selenium import ...

  8. 八十五:redis之redis的事物、发布和订阅操作 (2019-11-18 22:54)

    redis事物可以一次执行多个命令,事物具有以下特征1.隔离操作:事物中的所有命令都会序列化.按顺序执行,不会被其他命令打扰2.原子操作:事物中的命令要么全部被执行,要么全部都不执行 开启一个事物,以 ...

  9. git介绍以及常用命令操作

    一.git与SVN的对比[面试] ①git是分布式的,SVN是集中式的(最核心) ②git是每个历史版本都存储完整的文件,便于恢复,SVN是存储差异文件,历史版本不可恢复(核心) ③git可离线完成大 ...

  10. IDEA2019.2个人使用方案

    参考文档 https://segmentfault.com/a/1190000019813993?utm_source=tag-newest