转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享!

在机器学习、多维信号处理等领域,凡涉及到图论的地方,相信小伙伴们总能遇到和拉普拉斯矩阵和其特征值有关的大怪兽。哪怕过了这一关,回想起来也常常一脸懵逼,拉普拉斯矩阵为啥被定义成  ?这玩意为什么冠以拉普拉斯之名?为什么和图论有关的算法如此喜欢用拉普拉斯矩阵和它的特征值?

最近读论文的时候,刚好趁机温习了一下相应的内容,寻本朔源一番,记录下来,希望大家阅读之后,也能够有个更加通透的理解。

要讲拉普拉斯矩阵,就要从拉普拉斯算子讲起,要讲拉普拉斯算子,就要从散度讲起~

于是我们从散度开始,发车啦~~~


通量与散度

首先我们来看一道初中物理题:

小明乘帆船出行,刮来一阵妖风,假设帆的面积为  , 和妖风的夹角为  ,妖风在每单位面积上的垂直风压为  ,求妖风对帆的推动力

那么聪明伶俐(?)的我们一定知道,这道题的答案应该是  。

如果我们用  表示风的向量(且  ),用  表示帆的法向量,结合高中数学知识我们知道上述公式也可以写成

。。。

如果我们现在再把题目弄复杂一点,假设船帆不是一个平面,而是一个空间中的曲面  ,在  所在的每一点(面积微元 )处,其法向量为  ,且空间中存在的风为  ,根据大学数学知识我们可以得到:

于是我们就得到了通量  的定义, 

。。。

那么如果我们有一个封闭曲面呢,比如:

在向量场下的封闭曲面

此时我们指定曲面每一点处的法向量为该点朝外的向量:

红色箭头为法向量,注意在上面的例子中风与帆的比喻并不完全恰当,在计算通量的时候一般我们认为向量场会穿过曲面,而非被挡住

于是我们有

对于上图,根据向量乘法的基本原理,聪明的我们很容易知道,对于射入曲面的那一部分(左半边),其通量为,而对于射出曲面的那一部分(右半边),其通量为正。

更进一步的思考我们可以得出,相互抵消后,这一曲面上的总通量为 

。。。

接下来我们看下一张图:

显然,在这一向量场中,红色曲面上的总通量为负,而绿色曲面上的总通量为正。 那么我们不断缩小这两个曲面,直至其无限接近一个点  ,并将其总通量除以曲面所围成的体积  ,得到:

 ,

我们便得到了点  处的散度。

。。。

根据上面的分析,我们不难看出,在红圈所在圆心处的散度为负,而绿圈圆心处的散度为正。

结合上述定义,我们知道,散度衡量了一个点处的向量场是被发射还是被吸收,或者说,对于散度为正的点,散度越大,意味着相应的向量场越强烈地在此发散,而对于散度为负的点,意味着相应的向量场在此汇聚

嗯,就这么简单~ XD

拉普拉斯算子

接下来就是我们可爱的拉普拉斯算子啦~~

根据定义,函数  的拉普拉斯算子  又可以写成  ,其被定义为函数  梯度散度

那么这又是什么意思呢?

我们知道,在直角坐标系下,一个函数  在  处的梯度是一个向量  ,

于是函数  的梯度函数 

就构成了一个在三维空间下的向量场。

于是乎,我们对这一向量场  求散度  ,即得到了  的拉普拉斯算子  。

为什么要这样做呢?

让我们想像一座山,根据梯度的定义,在山峰周围,所有的梯度向量向此汇聚,所以每个山峰处的拉普拉斯算子为负;而在山谷周围,所有梯度从此发散,所以每个山谷处的拉普拉斯算子为正。所以说,对于一个函数,拉普拉斯算子实际上衡量了在空间中的每一点处,该函数梯度是倾向于增加还是减少

歪个楼,描述物理系统最优美的公式之一拉普拉斯方程,  ,大家可以想一想,这一公式表达了物理系统怎么样的特征呢?

图论下的函数

我们知道,互相连接的节点可以构成一张,其中包含所有点构成的集合  , 和所有边构成的集合  。

对于实数域上的函数  ,我们可以理解为一种对于  的映射,将每个可能的  映射到一个对应的  上(  )。

相应地,我们也可以定义一个图函数  ,使得图上的每一个节点  ,都被映射到一个实数  上。

比如说,假设我们有一个这样的社交网络图谱:

假设说每一条边的权值对应两个人之间信息的流通程度。现在我们想要分析这个社交网络上的信息传播,我们不仅需要知道信息流通的程度,我们还要知道每个人发动态的活跃程度,于是我们现在给这个图一个函数  ,使得:

这里的负数似乎可以理解为,  和  是谣言终结者,可以阻止信息的传播~

那么我们得到这样一张图:

图函数的梯度

我们定义了图论的函数,那么应该如何给图论下的函数定义梯度呢?

我们记得,梯度的意义在于,衡量函数在每一个点处,在每个正交方向上的变化,如  的梯度在  方向的分量 

在图论中,我们认为一个节点沿着每一条边通向它的相邻节点,而每两条边之间互相并没有什么关系,也就是说我们认为这个节点的每一条边互相都是正交的

并且对于两个节点,我们定义其距离  为其边权值的倒数(比如上面社交网络的例子,我们可以认为,两个人的信息流通程度越低,两个人的友谊就“越远”)

那么对于一个节点  ,我们认为其梯度在一条通向  的边  上的分量

(其中  为  到  的距离),

为了计算梯度,我们给出一个这样的矩阵:

每一行代表一个点,每一列代表一条边,使得对于每个点每条边,如果该条边从该点发射出去,且权值为  ,则将矩阵中对应的这一元素置为  ,如果该条边指向该点,则将对应的元素置为 

具体到上面社交网络的例子,我们有相应的矩阵  :

我们又有关于图函数  的列向量  :

我们试着计算  :

经过观察我们可以知道,最后计算结果的向量,即是整个图  在  函数上的梯度  ,其中每一行,为该梯度在一条边上的分量。

所以对于图  ,我们有  ,使得 

拉普拉斯算子与拉普拉斯矩阵

我们记得在函数中,拉普拉斯算子的定义为函数梯度的散度,即每一点上其梯度的增加/减少,那么对于图函数,其每一“点”即为每个“节点”,其梯度的散度该怎么定义呢?

我们几乎可以立刻可以想到,图函数每一点上梯度的散度,即是从该节点射出的梯度,减去射入该节点的梯度,那么我们几乎又可以立即想到(?),根据这样的定义去计算散度,只要把原来的梯度再左乘一个这样的矩阵就可以啦:

每一行代表一个点,每一列代表一条边,使得对于每个点每条边,如果该条边从该点发射出去,则将矩阵中对应的这一元素置为  ,如果该条边指向该点,则将对应的元素置为 

命名这一矩阵为 

也就是说,我们把  的每个元素,正的变成1,负的变成-1,就得到了 

那么,

于是我们得到了图论函数的拉普拉斯算子  ,即我们常说的拉普拉斯矩阵

注意在我们上面的范例中,将任意一条边的方向反转,等价于在  的一列上乘以  ,这种情况下最终  不会改变,也就是说拉普拉斯矩阵的值与图中每一条边的方向无关,所以拉普拉斯矩阵一般用来表述无向图

计算  的值,我们得到矩阵:

注意到这一对称矩阵,对角线即是每个点的,而其余的元素,则是负的邻接矩阵,于是乎我们得到了拉普拉斯矩阵的经典算式:

(至于外面的各种资料为什么往往只使用  而非  ,个人认为是因为前者只涉及减法,计算远远快于后者,所以程序中一般使用前者。但是为了理解拉普拉斯矩阵的意义,对后者的了解在我看来是必须的

拉普拉斯矩阵的重要性质

拉普拉斯矩阵之所以如此常用,是因为其一大重要性质: 拉普拉斯矩阵的  个特征值  都是非负值,且有 

同时,我们引入关于矩阵  和  的瑞利熵的概念: 

其中    共轭矩阵,对于  为实数矩阵的情况下 

而通过拉格朗日乘子法可以得出,瑞利熵的一个非常重要的特点就是: 瑞丽熵的最大值,等于  的最大特征值,瑞利熵的最小值,等于  的最小特征值

再看看图算法中对于拉普拉斯矩阵  的运算中常常出现的f  ,结合上文所述的拉普拉斯矩阵的重要性质,那么拉普拉斯矩阵在各种图算法中的应用,想必大家也能够理解啦~

graph Laplacian 拉普拉斯矩阵的更多相关文章

  1. 拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明

    摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Lapla ...

  2. SC3聚类 | 拉普拉斯矩阵 | Laplacian matrix | 图论 | R代码

    Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: ...

  3. 拉普拉斯矩阵(Laplacian matrix)

    原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = ...

  4. What’s up with the Graph Laplacian

    What's up with the Graph Laplacian? 来源 作者:Jeremy Kun blog: Math ∩ Programming 在数学上图和与图关联的某些矩阵的代数性质有很 ...

  5. 拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)

    作者:桂. 时间:2017-04-13  07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. Laplacian matrix 从拉普拉斯矩阵到谱聚类

    谱聚类步骤 第一步:数据准备,生成图的邻接矩阵: 第二步:归一化普拉斯矩阵: 第三步:生成最小的k个特征值和对应的特征向量: 第四步:将特征向量kmeans聚类(少量的特征向量):

  7. opencv —— Laplacian 拉普拉斯算子、二阶导数用于边缘检测

    Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子:   计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, ...

  8. HDU 5607 graph(DP+矩阵乘法)

    [题目链接] http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=663&pid=1002 [题意] 给定一个有向 ...

  9. 拉普拉斯特征映射(Laplacian Eigenmaps)

    1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲, ...

随机推荐

  1. PAT 甲级 1055 The World's Richest (25 分)(简单题,要用printf和scanf,否则超时,string 的输入输出要注意)

    1055 The World's Richest (25 分)   Forbes magazine publishes every year its list of billionaires base ...

  2. 通用的调用WebService的两种方法。(调用别人提供的wsdl)(转)

    转载自:http://blog.sina.com.cn/s/blog_65933e020101incz.html1.调用WebService的Client端采用jax-ws调用WebService:流 ...

  3. redis未设置idle超时时间导致连接过多

    今天ELK收集日志的时候,发现收集失败,查找各方面原因,最后在redis日志里面发现报错:[2489] 02 Jun 10:43:42 # Error allocating resoures for ...

  4. (转)Flink简介

    1. Flink的引入 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河 ...

  5. 【Leetcode_easy】811. Subdomain Visit Count

    problem 811. Subdomain Visit Count solution: class Solution { public: vector<string> subdomain ...

  6. Docker容器中用户权限管理

    在Linux系统中有一部分知识非常重要,就是关于权限的管理控制:Linux系统的权限管理是由uid和gid负责,Linux系统会检查创建进程的uid和gid,以确定它是否有足够的权限修改文件,而非是通 ...

  7. 【计算机视觉】Objectness算法(一)---总体理解,整理及总结

    1.源码下载及转换为VS2012 WIN32版本. http://www.cnblogs.com/larch18/p/4560690.html 2.原文: http://wenku.baidu.com ...

  8. Mariadb/Mysql命令行常用命令

    一.初始化等 1.登陆数据库方法    mysql -u 用户名 -p 用户密码 2.修改root及用户密码 use mysql; update user set password=password( ...

  9. React native 放大点击区域 hitSlop属性的使用

    在日常的需求中,如上图的加减按钮,可能写ui布局的时候没考虑实际的这个点击范围太小,不利于真机上用户点击到,如果加包裹层加padding的话又会影响原先定好的布局,或者不利于对齐. 那么可以用  hi ...

  10. [转帖]Pivotal Greenplum 6.0 新特性介绍

    Pivotal Greenplum 6.0 新特性介绍 https://cloud.tencent.com/developer/news/391063 原来 greenplum 也是基于pg研发的. ...