1250 Fibonacci数列

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 钻石 Diamond

题目描述 Description

定义:f0=f1=1, fn=fn-1+fn-2(n>=2)。{fi}称为Fibonacci数列。

输入n,求fn mod q。其中1<=q<=30000。

输入描述 Input Description

第一行一个数T(1<=T<=10000)。

以下T行,每行两个数,n,q(n<=109, 1<=q<=30000)

输出描述 Output Description

文件包含T行,每行对应一个答案。

样例输入 Sample Input

3

6 2

7 3

7 11

样例输出 Sample Output

1

0

10

数据范围及提示 Data Size & Hint

1<=T<=10000

n<=109, 1<=q<=30000

分类标签 Tags

矩阵乘法 数论

/*
矩阵乘法快速幂.
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
a[1][1]=1,a[1][2]=2;
b[1][2]=ans[1][2]=1,b[2][1]=ans[2][1]=1;
b[1][1]=ans[1][1]=0;
b[2][2]=ans[2][2]=1;
mi(n);
printf("%d\n",(ans[1][1]+ans[2][1])%m);
}
int main()
{
int t;
t=read();
while(t--)
{
n=read();m=read();
n--;
slove();
}
return 0;
}

1250 Fibonacci数列(矩阵乘法)的更多相关文章

  1. CODEVS1533 Fibonacci数列 (矩阵乘法)

    嗯,,,矩阵乘法最基础的题了. Program CODEVS1250; ..,..] of longint; var T,n,mo:longint; a,b:arr; operator *(a,b:a ...

  2. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  3. 1250 Fibonacci数列(矩阵乘法快速幂)

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 定义:f0=f1=1, f ...

  4. 1250 Fibonacci数列

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 定义:f ...

  5. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  6. 【wikioi】1250 Fibonacci数列(矩阵乘法)

    http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...

  7. [codevs]1250斐波那契数列<矩阵乘法&快速幂>

    题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...

  8. Loj10222 佳佳的Fibonacci(矩阵乘法)

    题面 给定\(n,m\),求: \[ T(n)=\sum_{i=1}^ni\times f_i \] 其中\(f_i\)为斐波那契数列的第\(i\)项 题解 不妨设: \[ S(n)=\sum_{i= ...

  9. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

随机推荐

  1. Thinking In Java 4th Chap2 一切都是对象

    对基本数据类型的初始化有二: 1.String s="asdf"; 2.String s=new String("asdf"); 可能的存储区域: 寄存器(不可 ...

  2. Web Server 分布式服务: Nginx负载均衡

    Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器.由俄罗斯的程序设计师Igor Sysoev所开发,供俄国大型的入口网站及搜索引擎Rambler使用.其 ...

  3. Spring HttpServletRequest对象的获取

    1.Controller方法上获取 @RequestMapping(value = "/aliyun/ccc/callComing", method = RequestMethod ...

  4. Javascript中的继承与复用

    实现代码复用的方法包括:工厂模式.构造函数模式.原型模式(<高三>6.2章 P144),它们各自的特点归结如下:1.工厂模式虽然使创建对象一定程度上实现了代码复用,但却没有解决对象识别问题 ...

  5. 华为机试题:仿LISP

    package com.nowcoder.huawei; import java.util.*; public class LISP { // 只通过80% // (+ (* 2 3) (^ 4)) ...

  6. h5学习之表单

    <html> <head> <title>新型input类型及表单新元素</title> <meta charset="utf-8&qu ...

  7. 虚拟机CentOS启动报错-entering emergency mode解决办法

    转载自:https://blog.csdn.net/csdn_yym/article/details/87970960 解决方法只需要在这里的shell键入一条命令: xfs_repair -v -L ...

  8. WCF和SOA的简介

    1 什么是SOA:面向服务架构(service oriented architecture),他属于一种组件架构模式.SOA追求的是服务提供方和服务使用方的高度解耦. 服务必须是自解释的,也就是说必须 ...

  9. Python3简易接口自动化测试框架设计与实现(中)

    目录 7.Excel数据读取 7.1.读取配置文件 7.1.编写Excel操作类 8.用例组装 9.用例运行结果校验 10.运行用例 11 .小结 上一篇:Python3简易接口自动化测试框架设计与实 ...

  10. Djang简介

    一:MVC简介 MVC的全拼为Model-View-Controller,最早由TrygveReenskaug在1978年提出,是施乐帕罗奥多研究中心(Xerox PARC)在20世纪80年代为程序语 ...