1250 Fibonacci数列(矩阵乘法)
1250 Fibonacci数列
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题目描述 Description
定义:f0=f1=1, fn=fn-1+fn-2(n>=2)。{fi}称为Fibonacci数列。
输入n,求fn mod q。其中1<=q<=30000。
输入描述 Input Description
第一行一个数T(1<=T<=10000)。
以下T行,每行两个数,n,q(n<=109, 1<=q<=30000)
输出描述 Output Description
文件包含T行,每行对应一个答案。
样例输入 Sample Input
3
6 2
7 3
7 11
样例输出 Sample Output
1
0
10
数据范围及提示 Data Size & Hint
1<=T<=10000
n<=109, 1<=q<=30000
分类标签 Tags
矩阵乘法 数论
/*
矩阵乘法快速幂.
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
a[1][1]=1,a[1][2]=2;
b[1][2]=ans[1][2]=1,b[2][1]=ans[2][1]=1;
b[1][1]=ans[1][1]=0;
b[2][2]=ans[2][2]=1;
mi(n);
printf("%d\n",(ans[1][1]+ans[2][1])%m);
}
int main()
{
int t;
t=read();
while(t--)
{
n=read();m=read();
n--;
slove();
}
return 0;
}
1250 Fibonacci数列(矩阵乘法)的更多相关文章
- CODEVS1533 Fibonacci数列 (矩阵乘法)
嗯,,,矩阵乘法最基础的题了. Program CODEVS1250; ..,..] of longint; var T,n,mo:longint; a,b:arr; operator *(a,b:a ...
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- 1250 Fibonacci数列(矩阵乘法快速幂)
1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, f ...
- 1250 Fibonacci数列
1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 定义:f ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 【wikioi】1250 Fibonacci数列(矩阵乘法)
http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- Loj10222 佳佳的Fibonacci(矩阵乘法)
题面 给定\(n,m\),求: \[ T(n)=\sum_{i=1}^ni\times f_i \] 其中\(f_i\)为斐波那契数列的第\(i\)项 题解 不妨设: \[ S(n)=\sum_{i= ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- python flask 如何读取数据库数据并返回到html
app.py from flask import Flask from flask import render_template from flask_bootstrap import Bootstr ...
- linux学习笔记(1) -- 关于命令的一些操作
Linux 目录 /:根目录,一般根目录下只存放目录,在Linux下有且只有一个根目录.所有的东西都是从这里开始.当你在终端里输入“/home”,你其实是在告诉电脑,先从/(根目录)开始,再进入到ho ...
- zookeeper集群搭建与升级
zookeeper 1.zookeeper功能 1-1.配置管理 集中管理配置文件实现服务治理 1-2.命名服务 如为了通过网络访问一个系统,我们得知道对方的IP地址,但是IP地址对人非常不友好,这个 ...
- 2、wepy安装后提示Cannot read property 'addDeps' 参考自https://www.cnblogs.com/yuanchaoyong/p/11614400.html
摘抄自https://www.cnblogs.com/yuanchaoyong/p/11614400.html wepy安装步骤 $ npm install @wepy/cli -g # 全局安装 W ...
- editormd 富文本编辑器转 html
// html <div id="markdown-view"> <textarea id="markdownView" style=&quo ...
- iOS开发中常用的颜色及其对应的颜色值
R G B 值 R G B 值 R G B 值 黑色 0 0 0 #000000 黄色 255 255 0 #FFFF00 浅灰蓝色 176 224 230 #B0E0E6 象牙黑 41 ...
- VmWare 网络模式
VMware虚拟机三种联网方法及原理 一.Brigde--桥接:默认使用VMnet0 1.原理: Bridge 桥"就是一个主机,这个机器拥有两块网卡,分别处于两个局域网中,同时在" ...
- Spring Cloud(十)高可用的分布式配置中心 Spring Cloud Config 中使用 Refresh
上一篇文章讲了SpringCloudConfig 集成Git仓库,配和 Eureka 注册中心一起使用,但是我们会发现,修改了Git仓库的配置后,需要重启服务,才可以得到最新的配置,这一篇我们尝试使用 ...
- C#面向对象 (访问修饰符、封装、继承、多态)
先看一下创建一个新项目时的基本格式 using System; using System.Collections.Generic; using System.Linq; //引用的命名空间 using ...
- str 文本函数的调用
方法 说明 S.isdigit() 判断字符串中的字符是否全为数字 S.isalpha() 判断字符串是否全为英文字母 S.islower() 判断字符串所有字符是否全为小写英文字母 S.isuppe ...