Luogu P1066 2^k进制数 组合数学
分两种情况:$k|n$和$k$不整除$n$
如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块;所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C_{2^k-1}^{x}$
所以整除时答案是$\sum_{i=2}^{n/k} \space C_{2^k-1}^{i}$
如果$k$不整除$n$,那么一共会分成$\lfloor \frac{n}{k} \rfloor+1$块,而最后一个不完整的块只有$n\text{mod} k$位,能选择的数还是$0$到$2^{n\text{ } \text{mod} \text{ }k}-1$
如果这个最高位选择填$0$那么回到了$k|n$的情况,所以最高位填0的方案数为$\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor} C_{2^k-1}^{i}$
之后最高位还可以填$1$到$2^{n\text{ } \text{mod} \text{ }k}-1$,如果我们选择填$i$的话,那么后面的块内要填比$i$大的数,所以剩下的每个块内可以填的就有$2^k-1-i$个数,所以方案数就是$C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}$
所以最后的答案还应该加上$\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k} \space \space \space -1} \space C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}$
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<map>
#include<set>
#define ll long long
#define R register int
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} short c[]; int n,k,p,res,t;
inline string add(string a,string b) {
R lena=a.size(),lenb=b.size(); reverse(a.begin(),a.end()),reverse(b.begin(),b.end()); memset(c,,sizeof(c));
R p=; for(;p<max(lena,lenb)||c[p];++p) c[p]+=(int)(p<lena?:)*(a[p]-)+(int)(p<lenb?:)*(b[p]-),c[p+]+=c[p]/,c[p]%=;
string ret="\0"; for(R i=p-;~i;--i) ret.insert(ret.end(),char(c[i]+));
reverse(a.begin(),a.end()),reverse(b.begin(),b.end()); return ret;
}
string ans;
string C[][];
signed main() {
k=g(),n=g(),p=n/k,res=n%k;
t=(<<k)-,C[][]="";
for(R i=;i<=t;++i) { C[i][]="";
for(R j=;j<i;++j) C[i][j]=add(C[i-][j],C[i-][j-]); C[i][i]="";
} for(R i=;i<=p;++i) {
if(i>t) break; ans=add(ans,C[t][i]);
} R lim=(<<res)-;
for(R i=;i<=lim;++i) {
if(p>t-i) break; ans=add(ans,C[t-i][p]);
} cout<<ans<<endl;
}
2019.06.05
Luogu P1066 2^k进制数 组合数学的更多相关文章
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- [Luogu P1066] 2^k进制数 (组合数或DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...
随机推荐
- 搭建Leanote笔记
mongo\leanote #查询Linux开放的端口 netstat -nupl (UDP类型的端口) netstat -ntpl (TCP类型的端口) #下载安装MongoDB wget http ...
- Chrome浏览器控制台报 POST http://*** net::ERR_BLOCKED_BY_CLIENT
开发项目广告模块时,遇到前端提交的请求后台拿不到,好像被什么拦截了,查看了过滤器,拦截器都无错误,且请求也到不了拦截器,chrome浏览器报:ERR_BLOCKED_BY_CLIENT错误 搞腾一半天 ...
- Python非递归实现二叉树的后续遍历
leetcode 145. Binary Tree Postorder Traversal 思路一: 使用一个栈stack保存经过的根结点,另一个栈flag保存每个结点的右子树是否遍历: 如果根结点存 ...
- Linux(CentOS7)系统中部署Django web框架
1. 概述 部署django和vue架在逻辑上可以分为web层与数据库层:web前端通过实现了WSGI协议的模块对python代码进行解析,而python代码中则通过特定于数据库的操作接口对数据库进行 ...
- 图解Java继承内存分配
图解Java继承内存分配 继承的基本概念: (1)Java不支持多继承,也就是说子类至多只能有一个父类. (2)子类继承了其父类中不是私有的成员变量和成员方法,作为自己的成员变量和方法. (3)子 ...
- C# 使用Emit实现动态AOP框架 (二)
目 录 C# 使用Emit实现动态AOP框架 (一) C# 使用Emit实现动态AOP框架 (二) C# 使用Emit实现动态AOP框架 (三) C# 使用Emit实现动态AOP框架 进阶篇之异常处 ...
- vue覆盖UI组件样式不生效
检查检查是不是加了scoped 在vue中,我们需要引用子组件,包括ui组件(element.iview). 但是在父组件中添加scoped之后,在父组件中书写子组件的样式是无效果的. 去掉scope ...
- datatable 写入excel 2007
1 添加引用: NPOI NPOI.OOXML 2 private static void GenerateFile(DataTable dt) { DataSet ds = new DataSet( ...
- AOP底层实现原理,动态代理如何动态
代理 指定另外一个主体代替原来的某个主体去执行某个事物 代理执行的人 需要代理的人 需要代理的事情是一定要做的 但是被代理的人没有时间或自己做的不专业 静态代理: 父母朋友帮忙物色找对象 代理人掌握需 ...
- RabbitMQ的特点与应用场景(二)
1.RabbitMQ的主要特点 (1)可靠性:RabbitMQ可通过队列持久化,交换机持久化,消息持久化及ACK回应等机制保证可靠性 (2)支持多种语言与协议:RabbitMQ几乎支持所有的编程语 ...