HDU 1043八数码问题

  八数码,就是1~8加上一个空格的九宫格,这道题以及这个游戏的目标就是把九宫格还原到从左到右从上到下是1~8然后最后是空格。

  没了解康托展开之前,这道题怎么想都觉得很棘手,直接搜索的话也不知道怎么剪枝,而且判重也不可能开一个9维的数组,空间也不允许,所以先了解康托展开是无可厚非的第一步,这里就引用一下大佬的介绍,很简单很实用的关于全排列的一个东西

  康托展开和逆康托展开

  学会康托展开之后这道题就有很多解法了,很多是用A*的,不过这个我还没学会,只能弱弱的用万能的搜索来暴力过一切了,当然搜索的做法也有几个,直接暴力的正向搜索单组测试数据是可以的,单多组测试数据的话还是会超时,还有种双向bfs的做法,也就是把当前的数列和我们要的目标数列同时加入队列,然后两个相遇时就可以了。

  不过我个人觉得那两个写起来比较麻烦不好处理,所以我还是采用一个逆向的bfs来打表,为什么可以打表的,了解康托展开后我们可以知道,这题的全排列最多也就9!,那我们完全可以预处理一下,由目标状态去跑到其他状态,把每个状态的康托展开的值作为它的一个编号,由此打表,具体的如代码

 #include<cstdio>
#include<queue>
using namespace std;
const int dir[][]={{,},{,},{,-},{-,}};
const char leg[]={'l','u','r','d'};//因为是逆回去的,所以方向是反的
char s[];
int jc[]={},sm[];
struct Way{
char ans;
int f;
Way(){
f=-;
}
}w[];
struct Node{
int num[];
int kt,p;//康托值,x的位置
};
int kangtuo(int *a)//康托展开
{
int ans=;
for(int i=;i<;i++)
{
int k=;
for(int j=i+;j<;j++)
if(a[i]>a[j])
k++;
ans+=k*jc[-i];
}
return ans;
}
void bfs()
{
queue<Node> q;
Node b;
for(int i=;i<;i++)
b.num[i]=i;
b.kt=,b.p=;
q.push(b);
while(!q.empty())
{
Node e=q.front();
q.pop();
for(int i=;i<;i++)
{
int dx=e.p/+dir[i][];//二维比价好处理位置变化
int dy=e.p%+dir[i][];
if(dx>=&&dx<&&dy>=&&dy<)
{
b=e;b.p=dx*+dy;
int t=b.num[e.p];b.num[e.p]=b.num[b.p];b.num[b.p]=t;
b.kt=kangtuo(b.num);
if(w[b.kt].f==-)
{
w[b.kt].f=e.kt;
w[b.kt].ans=leg[i];
q.push(b);
}
}
}
}
}
int main()
{
for(int i=;i<=;i++)
jc[i]=jc[i-]*i;
bfs();
while(~scanf("%s",s))
{
for(int i=;i<;i++)
scanf("%s",s+i);
for(int i=;i<;i++)
if(s[i]>=''&&s[i]<='')
sm[i]=s[i]-'';
else
sm[i]=;
int kt=kangtuo(sm);
if(w[kt].f==-)//没遍历到这个状态
printf("unsolvable\n");
else
{
while(kt)//回溯输出答案
{
printf("%c",w[kt].ans);
kt=w[kt].f;
}
printf("\n");
}
}
return ;
}

代码千万条,自觉第一条,复制粘贴爽,打铁泪两行

  既然涉及到八数码,最后再补充一个结论,怎么直接判断八数码有没有解,这涉及到逆序数,目标状态1~8的逆序数是0,而上下左右的变换并不会改变逆序数的奇偶性,(这里说的逆序数是不计x的)

所以结论就是,序列的奇偶性要和目标状态一致。

逆向bfs搜索打表+康拓判重的更多相关文章

  1. 八数码问题+路径寻找问题+bfs(隐式图的判重操作)

    Δ路径寻找问题可以归结为隐式图的遍历,它的任务是找到一条凑够初始状态到终止问题的最优路径, 而不是像回溯法那样找到一个符合某些要求的解. 八数码问题就是路径查找问题背景下的经典训练题目. 程序框架 p ...

  2. hdu 5012 bfs --- 慎用STL 比方MAP判重

    http://acm.hdu.edu.cn/showproblem.php?pid=5012 发现一个问题 假设Sting s = '1'+'2'+'3'; s!="123"!!! ...

  3. poj3635 FULL tank(TLE) 有限制的最短路(BFS搜索)。

    用的BFS+优先队列+二进制压缩状态判重+链式前向星, TLE,好像有人这样过了...好像要用A*算法,还不太会,所以暂时放弃.但是也学会了很多,学习了链式前向星,更深理解了BFS求最优的时候,什么时 ...

  4. BFS(四):搜索状态判重

    在采用广度优先算法进行搜索时,一个需要重点注意的是在搜索过程中判重和去重.前面介绍的几个例子中,判重都较简单,如采用vis[]数组,若vis[i]==0,则i未访问过,i入队列:若vis[i]!=0, ...

  5. UVA 10651 Pebble Solitaire(bfs + 哈希判重(记忆化搜索?))

    Problem A Pebble Solitaire Input: standard input Output: standard output Time Limit: 1 second Pebble ...

  6. BFS以及hash表判重的应用~

    主要还是讲下hash判重的问题吧 这道题目用的是除法求余散列方式 前几天看了下算法导论 由于我们用的是线性再寻址的方式来解决冲突问题 所以hash表的大小(余数的范围)要包含我们要求的范围 对mod的 ...

  7. poj 1077-Eight(八数码+逆向bfs打表)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  8. hdu 4444 Walk (离散化+建图+bfs+三维判重 好题)

    Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. HDU1043 Eight(八数码:逆向BFS打表+康托展开)题解

    Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

随机推荐

  1. Java基础之IO和NIO补完

    Java Stream,File,IO 关于NIO和IO的比较,参考:Java NIO系列教程(十二) Java NIO与IO java包之java.io 参考材料:菜鸟教材 NIO 由于下面的系列教 ...

  2. Java多线程(十一):线程组

    线程组 线程组可以批量管理线程和线程组对象. 一级关联 例子如下,建立一级关联. public class MyThread43 implements Runnable{ public void ru ...

  3. Rikka with Competition hdu 6095

    签到题目,排序然后按序清理掉一定会输的结果就可以. ac代码: #include <iostream> #include <cstdio> #include <cstri ...

  4. eclipse 创建聚合maven项目(转)

    转自https://blog.csdn.net/u013239111/article/details/76560167 以前我们搭建项目时,通常是吧pojo.dao.service.配置文件等都放在一 ...

  5. django管理系统代码优化-分组(二)

    django管理系统代码优化-分组(二) 后续进行代码更新,优化 一优化的内容 优化前代码:https://www.cnblogs.com/pythonywy/p/11345626.html 路由进行 ...

  6. sketch最强切图工具Sketch Measure

    https://www.inpandora.com/sketch-measure.html https://www.jianshu.com/p/c11ae88e6b1d

  7. iOS 定义多个参数函数的写法

    多个参数的写法 (方法的数据类型)函数名:(参数1数据类型)参数1的数值的名字 参数2的名字: (参数2数据类型) 参数2值的名字 …. ; 如  :  有三个参数 -(void)getdetailI ...

  8. IOS 改变UISearchBar的背景色

    之前网上提供的方法试了很多种  都不能很好的去掉背景色  ,修改背景色方法如下: searchbar.barStyle = UIBarStyleBlackTranslucent; searchbar. ...

  9. 13 Msql之四种事务隔离界别

    一.事务的基本要素 1.原子性:事务开始后的所有操作,要么全部做完,要么全部不做,不能停滞在中间环节.事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没发生一样.也就是说事务是一个不可分割 ...

  10. mpvue + 微信小程序 picker 实现自定义多级联动 超简洁

    微信小程序官网只提供了省市区的三级联动,实际开发中更多的是自定义的多级联动: 依照微信小程序官网提供的自定义多级联动,需要使用到picker 的多列选择器,即设置 mode = multiSelect ...