第一种
/**
* 链表节点类
*/
class Node {
constructor(ele) {
this.ele = ele;
this.next = null;
}
}
/**
* 链表类
*/
class NodeList {
constructor(ele) {
this.head = new Node(ele); //初始化链表的头节点
}
findPreNode(item) {
let currentNode = this.head;
while (currentNode && currentNode.next && currentNode.next.ele !== item) {
if (currentNode.next) {
currentNode = currentNode.next;
} else {
currentNode = null;
} }
return currentNode;
}
findNode(item) {
let currentNode = this.head; while (currentNode && currentNode.ele !== item) {
if (currentNode.next) {
currentNode = currentNode.next;
} else {
currentNode = null;
}
} return currentNode;
}
findLastNode() {
let currentNode = this.head;
while (currentNode.next) {
currentNode = currentNode.next;
}
return currentNode;
}
append(newItem, preItem) {
let newNode = new Node(newItem);
if (preItem) { // 判读是否是插入到指定节点后面,如果不是则插入到最后一个节点。
let currentNode = this.findNode(preItem);
newNode.next = currentNode.next;
currentNode.next = newNode;
} else {
let lastNode = this.findLastNode();
lastNode.next = newNode;
}
}
remove(item) {
let preNode = this.findPreNode(item); // 找到前一节点,将前一节点的next指向该节点的next
if (preNode.next != null) {
preNode.next = preNode.next.next;
}
}
toString() {
let currentNode = this.head; let strList = [];
while (currentNode.next) {
strList.push(JSON.stringify(currentNode.ele));
currentNode = currentNode.next;
}
strList.push(JSON.stringify(currentNode.ele)); return strList.join(' ==> ')
}
/* 逆置分析

单链表分为带头节点和不带头节点两种,逆置思路有两种,第一种是采用头插法重新建立新的单链表,该方法直接遍历链表,每次将当前结点添加到新链表的头部;第二种是通过该表*next指针,定义三个指针*pre, *p, *r,分别表示三个连续结点,将p->next指向pre,但       同时p的后继节点会断开,所以需要用r保存其后继节点。

*/

// 头插法
reverse () {
let p = null;
let current = this.head;
while (current !== null) {
const temp = current.next;
current.next = p;
p = current;
current = temp;
}
return p;
} // 1 -> 2 -> 3 -> 4
// r
// 修改*next指针
reverse2 () {
let pre = null;
let p = null;
let r = null;
r = this.head;
while (r !== null) {
if (p === null) {
p = r;
r = r.next;
p.next = null;
continue;
}
pre = p;
p = r;
r = r.next;
p.next = pre;
}
return p;
}
}
let A = { name: 'A', age: 10 },
B = { name: 'B', age: 20 },
C = { name: 'C', age: 30 },
D = { name: 'D', age: 40 },
E = { name: 'E', age: 50 }; let nList = new NodeList(A); nList.append(C);
nList.append(B);
nList.append(D);
nList.append(E, A);
console.log(" " + nList);
nList.remove(C);
console.log(" now " + nList)

 
origin: {"name":"A","age":10} ==> {"name":"E","age":50} ==> {"name":"C","age":30} ==> {"name":"B","age":20} ==> {"name":"D","age":40}
now: {"name":"A","age":10} ==> {"name":"E","age":50} ==> {"name":"B","age":20} ==> {"name":"D","age":40}
第二种
/**
* 链表节点类
*/
class Node {
constructor (ele) {
this.ele = ele;
this.next = null;
}
}
/**
* 链表类
*/
class NodeList {
constructor (ele) {
this.head = null; // 初始化链表的头节点
this.lenght = 0;
}
/**
* 尾部插入数据
* @param {*} ele
*/
append (ele) {
let newNode = new Node(ele);
let currentNode;
if (this.head === null) {
this.head = newNode;
} else {
currentNode = this.head;
while (currentNode.next) {
currentNode = currentNode.next;
}
currentNode.next = newNode;
}
this.lenght++;
}/**
* 项链表某个位置插入元素
* @param {*} position
* @param {*} ele
*/
insert (position, ele) {
if (position >= 0 && position <= this.lenght) {
let newNode = new Node(ele);
let currentNode = this.head;
let pre;
let index = 0;
if (position === 0) {
newNode.next = currentNode;
this.head = newNode;
} else {
while (index < position) {
pre = currentNode;
currentNode = currentNode.next;
index++;
}
newNode.next = currentNode;
pre.next = newNode;
}
this.lenght++;
} else {
return new Error('位置超出范围');
}
}
removeAt (position) {
if (position >= 0 && position < this.lenght) {
let currentNode = this.head;
let pre;
let index = 0;
if (position === 0) {
this.head = currentNode.next;
} else {
while (index < position) { // 1,2,3
pre = currentNode;
currentNode = currentNode.next;
index++;
}
pre.next = currentNode.next;
}
this.lenght--;
} else {
return new Error('删除位置有误');
}
}
find (ele) {
let currentNode = this.head;
let index = 0;
while (currentNode) {
if (JSON.stringify(currentNode.ele) === JSON.stringify(ele)) {
return index;
} else {
index++;
currentNode = currentNode.next;
}
}
return -1;
}
// 判断链表是否为空
isEmpty () {
return this.length === 0;
}
size () {
return this.length;
}
// 返回头
getHead () {
return this.head;
}
toString () {
let current = this.head;
let str = '';
while (current) {
str += JSON.stringify(current.ele) + ' => ';
current = current.next;
}
return str;
}
}
let A = { name: 'A', age: 10 }; let B = { name: 'B', age: 20 }; let C = { name: 'C', age: 30 }; let D = { name: 'D', age: 40 }; let E = { name: 'E', age: 50 }; let nList = new NodeList(); nList.append(A);
nList.append(C);
nList.append(B);
nList.append(D);
nList.append(E);
// console.log(JSON.stringify(nList, null, 2));
console.log(' origin: ' + nList);
nList.removeAt(2);
console.log(' now: ' + nList);

origin: {"name":"A","age":10} => {"name":"C","age":30} => {"name":"B","age":20} => {"name":"D","age":40} => {"name":"E","age":50} =>
now: {"name":"A","age":10} => {"name":"C","age":30} => {"name":"D","age":40} => {"name":"E","age":50} =>

参照:https://blog.csdn.net/qq_40941722/article/details/94381637

es6 实现单链表的更多相关文章

  1. 时间复杂度分别为 O(n)和 O(1)的删除单链表结点的方法

    有一个单链表,提供了头指针和一个结点指针,设计一个函数,在 O(1)时间内删除该结点指针指向的结点. 众所周知,链表无法随机存储,只能从头到尾去遍历整个链表,遇到目标节点之后删除之,这是最常规的思路和 ...

  2. 单链表的C++实现(采用模板类)

    采用模板类实现的好处是,不用拘泥于特定的数据类型.就像活字印刷术,制定好模板,就可以批量印刷,比手抄要强多少倍! 此处不具体介绍泛型编程,还是着重叙述链表的定义和相关操作.  链表结构定义 定义单链表 ...

  3. Java实现单链表的各种操作

    Java实现单链表的各种操作 主要内容:1.单链表的基本操作 2.删除重复数据 3.找到倒数第k个元素   4.实现链表的反转   5.从尾到头输出链表 6.找到中间节点 7.检测链表是否有环 8.在 ...

  4. [LeetCode] Linked List Cycle II 单链表中的环之二

    Given a linked list, return the node where the cycle begins. If there is no cycle, return null. Foll ...

  5. c++单链表基本功能

    head_LinkNode.h /*单链表类的头文件*/#include<assert.h>#include"compare.h"typedef int status; ...

  6. 单链表、循环链表的JS实现

    数据结构系列前言: 数据结构作为程序员的基本知识,需要我们每个人牢牢掌握.近期我也展开了对数据结构的二次学习,来弥补当年挖的坑......   当时上课的时候也就是跟着听课,没有亲自实现任何一种数据结 ...

  7. C代码实现非循环单链表

    C代码实现非循环单链表, 直接上代码. # include <stdio.h> # include <stdlib.h> # include <malloc.h> ...

  8. 分离的思想结合单链表实现级联组件:CascadeView

    本文介绍自己最近做省市级联的类似的级联功能的实现思路,为了尽可能地做到职责分离跟表现与行为分离,这个功能拆分成了2个组件并用到了单链表来实现关键的级联逻辑,下一段有演示效果的gif图.虽然这是个很常见 ...

  9. 数据结构:单链表结构字符串(python版)添加了三个新功能

    #!/urs/bin/env python # -*- coding:utf-8 -*- #异常类 class stringTypeError(TypeError): pass #节点类 class ...

随机推荐

  1. Create Advanced Web Applications With Object-Oriented Techniques

    Create Advanced Web Applications With Object-Oriented Techniques Ray Djajadinata Recently I intervie ...

  2. Modbus​协议​深入​讲解_NI

    from:https://www.ni.com/zh-cn/innovations/white-papers/14/the-modbus-protocol-in-depth.html 已​更新 Mar ...

  3. CF311B Cats Transport(斜率优化)

    题目描述 Zxr960115 是一个大农场主.他养了m只可爱的猫子,雇佣了p个铲屎官.这里有一条又直又长的道路穿过了农场,有n个山丘坐落在道路周围,编号自左往右从1到n.山丘i与山丘i-1的距离是Di ...

  4. springboot 详解RestControllerAdvice(ControllerAdvice)(转)

    springboot 详解RestControllerAdvice(ControllerAdvice)拦截异常并统一处理简介 @Target({ElementType.TYPE}) @Retentio ...

  5. C++头文件中#pragma once与#ifndef……#define……#endif

    两者功能一样,防止重复包含被多次编译.建议头文件加入#pragma once C++头文件开头的两句与结尾的一句#ifndef <标识>#define <标识>类代码#endi ...

  6. MacOS使用zsh & oh-my-zsh

    shell 俗称壳,c 语言编写的命令解析器程序,是用户使用 linux 的桥梁. 目前常用的 Linux 系统和 OS X 系统的默认 Shell 都是 bash. zsh  和 bash 相似,且 ...

  7. [Luogu] 文艺平衡树(Splay)

    题面:https://www.luogu.org/problemnew/show/P3391 题解:https://www.zybuluo.com/wsndy-xx/note/1138892

  8. 洛谷 P2832 行路难

    题面 这个最短路有点special,会有疲劳度的加成效应,这个时候应该怎么办呢? 难就难在,如果走一条路比另一条路长,但是用的边少,那么这条路并不一定就更差. 我们要是能解决这个问题,就可以做出本题. ...

  9. luogu P2585 [ZJOI2006]三色二叉树

    P2585 [ZJOI2006]三色二叉树 题目描述 输入输出格式 输入格式: 输入文件名:TRO.IN 输入文件仅有一行,不超过10000个字符,表示一个二叉树序列. 输出格式: 输出文件名:TRO ...

  10. MIME协议(五) -- MIME邮件的编码方式

    5  MIME邮件的编码方式 由于每个ASCII码字符只占用一个字节(8个bit位),且最高bit位总为0,即ASCII码字符中的有真正意义的信息只是后面的7个低bit位,而传统的SMTP协议又是基于 ...