[CSP-S模拟测试]:任务分配(最短路+贪心+DP)
题目传送门(内部题149)
输入格式
每个测试点第一行为四个正整数$n,b,s,m$,含义如题目所述。
接下来$m$行,每行三个非负整数$u,v,l$,表示从点$u$到点$v$有一条权值为$l$的有向边,数据保证图是强连通的,也就是任意两个点之间都可以互相走到。
输出格式
对每组数据输出一行一个非负整数表示答案。
样例
样例输入1:
5 4 2 10
5 2 1
2 5 1
3 5 5
4 5 0
1 5 1
2 3 1
3 2 5
2 4 5
2 1 1
3 4 2
样例输出1:
13
样例输入2:
5 4 2 10
5 2 1
2 5 1
3 5 5
4 5 10
1 5 1
2 3 1
3 2 5
2 4 5
2 1 1
3 4 2
样例输出2:
24
数据范围与提示
每个测试点$5$分,各个测试点数据范围如下:
除此之外,数据中可能会均匀出现一些$s$值比较小的点。
对于所有的测试点,均有$m\leqslant 50,000,1\leqslant s\leqslant b<n,0\leqslant l\leqslant 10,000$,给定的有向图合法且强连通。
题解
先求出每个点到总部的正反最短路,建反向边即可。
化一下式子即可发现每一个点的代价为它的正反最短路长度和乘上它所在子项目有几个分部$-1$。
利用贪心的思想,小的放在一起,大的放在一起一定更优,于是可以排个序。
接着考虑$DP$,设$dp[i][j]$表示选到$i$,分了$j$组的最小代价,但是发现时间复杂度是$\Theta(n^3)$的,接着考虑优化。
在最优解中$dis$从小到大依次划分得到的段的长度一定是单调不增的,所以只有$[i-\frac{i}{j},i)$才能更新$dp[i][j]$。
那么现在算法的时间复杂度就是:$\Theta(n^2(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}))=\Theta(n^2\log n)$。
由于时限为$3s$所以跑过去绰绰有余。
时间复杂度:$\Theta(n^2\log n)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct rec{int nxt,to,w;}e[100001];
int head[2][5001],cnt;
int n,b,s,m;
int dis[2][5001];
bool vis[5001];
long long sum[5001],dp[5001][5001];
priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>>q;
void add(bool id,int x,int y,int w)
{
e[++cnt].nxt=head[id][x];
e[cnt].to=y;
e[cnt].w=w;
head[id][x]=cnt;
}
void Dij0()
{
q.push(make_pair(0,b+1));
dis[0][b+1]=0;
while(q.size())
{
int x=q.top().second;q.pop();
if(vis[x])continue;vis[x]=1;
for(int i=head[0][x];i;i=e[i].nxt)
if(dis[0][e[i].to]>dis[0][x]+e[i].w)
{
dis[0][e[i].to]=dis[0][x]+e[i].w;
q.push(make_pair(dis[0][e[i].to],e[i].to));
}
}
}
void Dij1()
{
memset(vis,0,sizeof(vis));
q.push(make_pair(0,b+1));
dis[1][b+1]=0;
while(q.size())
{
int x=q.top().second;q.pop();
if(vis[x])continue;vis[x]=1;
for(int i=head[1][x];i;i=e[i].nxt)
if(dis[1][e[i].to]>dis[1][x]+e[i].w)
{
dis[1][e[i].to]=dis[1][x]+e[i].w;
q.push(make_pair(dis[1][e[i].to],e[i].to));
}
}
}
int main()
{
scanf("%d%d%d%d",&n,&b,&s,&m);
for(int i=1;i<=m;i++)
{
int a,b,l;
scanf("%d%d%d",&a,&b,&l);
add(0,a,b,l);add(1,b,a,l);
}
memset(dis,0x3f,sizeof(dis));
Dij0();Dij1();
for(int i=1;i<=b;i++)
sum[i]=dis[0][i]+dis[1][i];
sort(sum+1,sum+b+1);
for(int i=1;i<=b;i++)sum[i]+=sum[i-1];
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=b;i++)
for(int j=1;j<=s;j++)
for(int k=i-i/j;k<i;k++)
{
if((sum[i]-sum[k])*(i-k-1)>=dp[i][j])break;
dp[i][j]=min(dp[i][j],dp[k][j-1]+(sum[i]-sum[k])*(i-k-1));
}
printf("%lld",dp[b][s]);
return 0;
}
rp++
[CSP-S模拟测试]:任务分配(最短路+贪心+DP)的更多相关文章
- [CSP-S模拟测试]:二叉搜索树(DP+贪心)
题目传送门(内部题99) 输入格式 第一行一个整数$n$,第二行$n$个整数$x_1\sim x_n$. 输出格式 一行一个整数表示答案. 样例 样例输入: 58 2 1 4 3 样例输出: 数据范围 ...
- [CSP-S模拟测试]:C(三分+贪心)
题目传送门(内部题46) 输入格式 第一行$3$个整数$n,m,t$.第二行$n$个整数,表示$P_i$.接下来$m$行每行两个整数,表示$L_i,R_i$. 输出格式 一行一个整数表示答案. 样例 ...
- [CSP-S模拟测试]:括号密码(贪心)
题目描述 在“无限神机”的核心上,有一个奇怪的括号密码,密码初始已经有一个括号序列,有$n$个限制条件,每个限制条件描述为$l_i$和$r_i$,表示区间$[l_i,r_i]$的括号序列必须合法.调整 ...
- [CSP-S模拟测试]:trade(反悔贪心)
题目传送门(内部题62) 输入格式 第一行有一个整数$n$.第二行有$N$个整数:$a_1\ a_2\ a_3\cdot\cdot\cdot a_n$. 输出格式 一行一个整数表示最大收益. 样例 样 ...
- [CSP-S模拟测试]:Graph(图论+贪心)
题目描述 给定一张$n$个点$m$条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通你想在这张图上进行若干次旅游,每次旅游可以任选一个点$x$作为起点,再走到一个与 $x$直接有边相连的点$ ...
- [CSP-S模拟测试]:虎(DFS+贪心)
题目传送门(内部题15) 输入格式 第一行一个整数$n$,代表点数接下来$n-1$行,每行三个数$x,y,z$,代表点$i$与$x$之间有一条边,若$y$为$0$代表初始为白色,否则为黑色,若$z$为 ...
- [CSP-S模拟测试]:Emotional Flutter(贪心)
题目传送门(内部题51) 输入格式 第一行一个整数$t$表示数据组数.每组数据的第一行有三个整数$s,k,n$.第二行有$n$个整数$A_1,A_2,...,A_n$,依次表示黑白条的长度. 输出格式 ...
- 联赛模拟测试25 C. Repulsed 贪心+树形DP
题目描述 分析 考虑自底向上贪心 \(f[x][k]\) 表示 \(x\) 下面距离为 \(k\) 的需要灭火器的房间数,\(g[x][k]\) 表示 \(x\) 下面距离为 \(k\) 的多余灭火器 ...
- [CSP-S模拟测试]:字符交换(贪心+模拟)
题目传送门(内部题136) 输入格式 输入文件第一行为两个正整数$n,k$,第二行为一个长度为$n$的小写字母字符串$s$. 输出格式 输出一个整数,为对字符串$s$进行至多$k$次交换相邻字符的操作 ...
随机推荐
- wpf 模板绑定父对象
有两种方式可以实现在模板中元素绑定到父对象 1.<ContentPresenter Margin=”{TemplateBinding Padding}”/> 2.Color=”{Bindi ...
- mybatis如何接收字符串转换为date类型插入数据库
今天遇到一个问题,先描述一下: 后台获取数据,有一个字段是时间字段,后台传过来的是字符串类型的,如:2016/11/16 10:26:17, 将该字符串放在map对象中(持久层用的是mybatis或者 ...
- webpack配置不同打包配置
生成环境与开发环境打包配置 使用package.json配置npm run开启不同的打包配置 ...webpack基本使用最后一篇博客 在上一篇博客中详细的演示了webpack开启本地服务和热更新,这 ...
- Editplus code
网上一大堆,垃圾也是一大堆,保留一个真正的,提高效率 原文链接:https://blog.csdn.net/anhldd/article/details/85088715 Vovan 3AG46-JJ ...
- 4 java 笔记
1 javadoc工具默认只处理以public,protected修饰的类,接口,方法,成员变量,构造器和内部类之前的文档注释 2 文档注释以斜线后紧跟两个星号开始/**,以星号后紧跟一个斜线结束*/ ...
- 描述Cookie和Session的作用,区别和各自的应用范围,Session工作原理
Session用于保存每个用户的专用信息. 每个客户端用户访问时,服务器都为每个用户分配一个唯一的会话ID(Session ID) . 她的生存期是用户持续请求时间再加上一段时间(一般是20分钟左右) ...
- eclipse 导入外面的jar
Eclipse中导入外部jar包 听语音 | 浏览:52620 | 更新:2014-12-07 20:59 | 标签:eclipse 1 2 3 4 5 6 7 分步阅读 在编写java代码时,为方便 ...
- YII2中controller中的behaviors中的behavior内部是如何被使用的?
1. behaviors方法的调用: 在祖先对象components中有一个ensureBehaviors方法,代码如下: /** * Makes sure that the behaviors de ...
- nps内网渗透利用
0x00 前言 对比了比较多的代理工具,如ew流量不稳定,容易断:frsocks目前免杀,也是容易断.frp需要落地配置文件,不符合渗透的规则.reg正向的socks,速度比较慢,扫描是个问题.其实我 ...
- pycharm的快捷键以及快捷意义
ctrl+a 全选 ctrl+c 复制(默认复制整行) ctrl+v 粘贴 ctrl+x 剪切(默认复制整行) ctrl+f 搜索 ctrl+z 撤销 ctrl+shift+z 反撤销 ctrl+d ...