传送门

首先设 $f[x]$ 表示点分树上 $x$ 的子树内的方案数

发现对于 $x$ 的每个儿子 $v$ ,$x$ 似乎可以向 $v$ 子树内的每个节点连边,因为不管怎么连重心都不会变

显然是错的,题目描述中说如果有多个重心取编号最小的,所以如果 $v$ 的子树大小恰好为 $x$ 的子树大小的一半

那么 $x$ 只能向 $v$ 中编号大于 $x$ 的节点连边,找编号比较大的直接暴力找即可,因为点分树的深度是 $\log n$ 的

每个点最多被每个祖先枚举到一次,所以复杂度 $O(n \log n)$

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e5+,mo=1e9+;
int T,n,m;
int fir[N],from[N<<],to[N<<],cntt;
inline void add(int a,int b) { from[++cntt]=fir[a]; fir[a]=cntt; to[cntt]=b; }
int f[N],sz[N];
bool vis[N];
int calc(int x,int k)
{
int res=x>k;
for(int i=fir[x];i;i=from[i])
res+=calc(to[i],k);
return res;
}
void dfs(int x)
{
sz[x]=f[x]=;
for(int i=fir[x];i;i=from[i])
{
int &v=to[i];
dfs(v); sz[x]+=sz[v];
}
bool flag=!(sz[x]&); int t=sz[x]>>;
for(int i=fir[x];i;i=from[i])
{
int &v=to[i],cnt=;
if(flag && sz[v]==t)
cnt=calc(v,x);
else cnt=sz[v];
f[x]=1ll*f[x]*f[v]%mo*cnt%mo;
}
}
int main()
{
T=read();
while(T--)
{
for(int i=;i<=n;i++) fir[i]=vis[i]=; cntt=;
n=read(),m=read();
for(int i=;i<n;i++)
{
int a=read(),b=read();
add(a,b); vis[b]=;
}
int rt=;
for(int i=;i<=n;i++)
if(!vis[i]) { rt=i; break; }
dfs(rt);
printf("%d\n",f[rt]);
}
return ;
}

BZOJ 4835: 遗忘之树的更多相关文章

  1. bzoj 4835: 遗忘之树 [树形DP]

    4835: 遗忘之树 题意:点分治,选标号最小的重心,上一次重心向下一次重心连有向边,求原树方案数. md我真不知道当初比赛时干什么去了...现在一眼秒啊... \(size[v]=\frac{siz ...

  2. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  3. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  4. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  5. [BZOJ 2759] 一个动态树好题

    [BZOJ 2759] 一个动态树好题 题目描述 首先这是个基环树. 然后根节点一定会连出去一条非树边.通过一个环就可以解除根的答案,然后其他节点的答案就可以由根解出来. 因为要修改\(p_i\),所 ...

  6. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  7. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  8. 【BZOJ 3476】 线段树===

    59  懒惰的奶牛贝西所在的牧场,散落着 N 堆牧草,其中第 i 堆牧草在 ( Xi,Yi ) 的位置,数量有 Ai 个单位.贝西从家移动到某一堆牧草的时候,只能沿坐标轴朝正北.正东.正西.正南这四个 ...

  9. Bzoj 2789: [Poi2012]Letters 树状数组,逆序对

    2789: [Poi2012]Letters Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 278  Solved: 185[Submit][Stat ...

随机推荐

  1. mitmproxy修改二级代理

    第一步 mitmweb --mode upstream:http://114.240.101.242:5672 -s server.py 第二步 def request(self, flow: mit ...

  2. Linux设备驱动程序 之 模块参数

    模块支持参数的方法 内核允许驱动程序指定参数,这些参数可在运行insmod或者modprobe命令装载模块时赋值,modprobe还可以从它的配置文件(/etc/modporb.conf)中读取参数值 ...

  3. 解决:安装jenkins时web界面出现jenkins实例似乎已离线问题

    https://blog.51cto.com/8593714/2318144?tdsourcetag=s_pctim_aiomsg Windows下环境也可以解决:

  4. 图及其衍生算法(Graphs and graph algorithms)

    1. 图的相关概念 树是一种特殊的图,相比树,图更能用来表示现实世界中的的实体,如路线图,网络节点图,课程体系图等,一旦能用图来描述实体,能模拟和解决一些非常复杂的任务.图的相关概念和词汇如下: 顶点 ...

  5. 487-3279 字符串处理+MAP

    487-3279 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 300264   Accepted: 53757 Descr ...

  6. ubuntu下如何安装7z压缩工具?

    答: sudo apt-get install p7zip 1. 解压 7zr x filename.7z 2. 压缩 7zr a -t7z -r filename.7z ~/filename/* 各 ...

  7. 定位上下文(补充css的position属性)

    ]把元素的position属性设定为relative.absolute或fixed后,继而可以使用TRBL属性,相对于另一个元素移动该元素的位置.这里的“另一个元素”,就是该元素的定位上下文. 绝对定 ...

  8. 数据包从物理网卡流经 Open vSwitch 进入 OpenStack 云主机的流程

    目录 文章目录 目录 前言 数据包从物理网卡进入虚拟机的流程 物理网卡处理 如何将网卡收到的数据写入到内核内存? 中断下半部分软中断处理 数据包在内核态 OvS Bridge(Datapath)中的处 ...

  9. requestLibrary API

    requestLibrary API Keyword Arguments Documentation Create Ntlm Session alias, url, auth, headers={}, ...

  10. Requests API

    Requests API http://docs.python-requests.org/en/latest/ requests的具体安装过程请看: http://docs.python-reques ...