【转载】使用Pandas进行数据提取
使用Pandas进行数据提取
本文转载自:蓝鲸的网站分析笔记
原文链接:使用python进行数据提取
目录
数据提取是分析师日常工作中经常遇到的需求。如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔数,大于5000元的贷款数量等等。本篇文章介绍如何通过python按特定的维度或条件对数据进行提取,完成数据提取需求。
准备工作
首先是准备工作,导入需要使用的库,读取并创建数据表取名为loandata。
1
2
3
|
import numpy as np import pandas as pd loandata = pd.DataFrame(pd.read_excel( 'loan_data.xlsx' )) |
设置索引字段
在开始提取数据前,先将member_id列设置为索引字段。然后开始提取数据。
1
|
Loandata = loandata.set_index( 'member_id' ) |
按行提取信息
第一步是按行提取数据,例如提取某个用户的信息。下面使用ix函数对member_id为1303503的用户信息进行了提取。
1
|
loandata.ix[ 1303503 ] |
按列提取信息
第二步是按列提取数据,例如提取用户工作年限列的所有信息,下面是具体的代码和提取结果,显示了所有用户的工作年龄信息。
1
|
loandata.ix[:, 'emp_length' ] |
按行与列提取信息
第三步是按行和列提取信息,把前面两部的查询条件放在一起,查询特定用户的特定信息,下面是查询member_id为1303503的用户的emp_length信息。
1
|
loandata.ix[ 1303503 , 'emp_length' ] |
在前面的基础上继续增加条件,增加一行同时查询两个特定用户的贷款金额信息。具体代码和查询结果如下。结果中分别列出了两个用户的代码金额。
1
|
loandata.ix[[ 1303503 , 1298717 ], 'loan_amnt' ] |
在前面的代码后增加sum函数,对结果进行求和,同样是查询两个特定用户的贷款进行,下面的结果中直接给出了贷款金额的汇总值。
1
|
loandata.ix[[ 1303503 , 1298717 ], 'loan_amnt' ]. sum () |
除了增加行的查询条件以外,还可以增加列的查询条件,下面的代码中查询了一个特定用户的贷款金额和年收入情况,结果中分别显示了这两个字段的结果。
1
|
loandata.ix[ 1303503 ,[ 'loan_amnt' , 'annual_inc' ]] |
多个列的查询也可以进行求和计算,在前面的代码后增加sum函数,对这个用户的贷款金额和年收入两个字段求和,并显示出结果。
1
|
loandata.ix[ 1303503 ,[ 'loan_amnt' , 'annual_inc' ]]. sum () |

提取特定日期的信息
数据提取中还有一种很常见的需求就是按日期维度对数据进行汇总和提取,如按月,季度的汇总数据提取和按特定时间段的数据提取等等。
设置索引字段
首先将索引字段改为数据表中的日期字段,这里将issue_d设置为数据表的索引字段。按日期进行查询和数据提取。
1
|
loandata = loandata.set_index( 'issue_d' ) |
按日期提取信息
下面的代码查询了所有2016年的数据。
1
|
loandata[ '2016' ] |
在前面代码的基础上增加月份,查询所有2016年3月的数据。
1
|
loandata[ '2016-03' ] |
继续在前面代码的基础上增加日期,查询所有2016年6月16日的数据。
1
|
loandata[ '2016-06-16' ] |
除了按单独日期查询以外,还可以按日期段进行数据查询,下面的代码中查询了所有2016年1月至5月的数据。下面显示了具体的查询结果,可以发现数据的日期都是在1-5月的,但是按日期维度显示的,这就需要我们对数据按月进行汇总。
1
|
loandata[ '2016-01' : '2016-05' ] |
按日期汇总信息
Pandas中的resample函数可以完成日期的聚合工作,包括按小时维度,日期维度,月维度,季度及年的维度等等。下面我们分别说明。首先是按周的维度对前面数据表的数据进行求和。下面的代码中W表示聚合方式是按周,how表示数据的计算方式,默认是计算平均值,这里设置为sum,进行求和计算。
1
|
loandata.resample( 'W' ,how = sum ).head( 10 ) |
将W改为M,数据变成了按月聚合的方式。计算方式依然是求和。这里需要说明的是resample函数会显示出所有连续的时间段,例如前面按周的聚合操作会显示连续的周日期,这里的按月操作则会在结果中显示连续的月,如果某个时间段没有数据,会以NaN值显示。
1
|
loandata.resample( 'M' ,how = sum ) |
将前面代码中的M改为Q,则为按季度对数据进行聚合,计算方式依然为求和。从下面的数据表中看,日期显示的都是每个季度的最后一天,如果希望以每个季度的第一天显示,可以改为QS。
1
|
loandata.resample( 'Q' ,how = sum ) |
将前面代码中的Q改为A,就是按年对数据进行聚合,计算方式依然为求和。
1
|
loandata.resample( 'A' ,how = sum ) |
前面的方法都是对整个数据表进行聚合和求和操作,如果只需要对某一个字段的值进行聚合和求和,可以在数据表后增加列的名称。下面是将贷款金额字段按月聚合后求和,并用0填充空值。
1
|
loandata[ 'loan_amnt' ].resample( 'M' ,how = sum ).fillna( 0 ) |
在前面代码的基础上再增加一个数值字段,并且在后面的计算方式中增加len用来计数。在下面的结果中分别对贷款金额和利息收入按月聚合,并进行求和和计数计算
1
|
loandata[[ 'loan_amnt' , 'total_rec_int' ]].resample( 'M' ,how = [ len , sum ]) |
有时我们需要只对某一时间段的数据进行聚合和计算,下面的代码中对2016年1月至5月的数据按月进行了聚合,并计算求和。用0填充空值。
1
|
loandata[ '2016-01' : '2016-05' ].resample( 'M' ,how = sum ).fillna( 0 ) |
或者只对某些符合条件的数据进行聚合和计算。下面的代码中对于贷款金额大于5000的按月进行聚合,并计算求和。空值以0进行填充。
1
|
loandata[loandata[ 'loan_amnt' ]> 5000 ].resample( 'M' ,how = sum ).fillna( 0 ) |
除了按周,月,季度和年以外,resample函数还可以按以下方式对日期进行聚合。下面给出了具体的对应表和说明。
【转载】使用Pandas进行数据提取的更多相关文章
- 转载:使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...
- 【转载】使用Pandas对数据进行筛选和排序
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 ...
- 【转载】使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...
- 【转载】使用Pandas创建数据透视表
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...
- 【学习】Python进行数据提取的方法总结【转载】
链接:http://www.jb51.net/article/90946.htm 数据提取是分析师日常工作中经常遇到的需求.如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔 ...
- Python爬虫教程-18-页面解析和数据提取
本篇针对的数据是已经存在在页面上的数据,不包括动态生成的数据,今天是对HTML中提取对我们有用的数据,去除无用的数据 Python爬虫教程-18-页面解析和数据提取 结构化数据:先有的结构,再谈数据 ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- PDO 学习与使用 ( 二 ) PDO 数据提取 和 预处理语句
以数据库 msg 为例,说明 PDO 的数据提取.预处理语句: mysql> show tables;+---------------+| Tables_in_msg |+----------- ...
随机推荐
- Android欢迎界面
欢迎界面,最典型的表现: 1.是整个应用的启动界面: 2.没有标题栏: 3.几秒之后才进入主界面. 所以实现上面3点,一个最基本的欢迎界面就做出来了. 首先,新建一个Activity,命名为Splas ...
- MogileFS系统简单配置实例
实验原理: MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached.Mo ...
- linux下shell脚本执行jar文件
最近在搞一个shell脚本启动jar文件个关闭jar文件的东东.搞得我都蛋疼了.今天晚上终于弄好了 话说,小弟的linux只是刚入门,经过各方查资料终于搞定了.话不多说,下面开始上小弟写的shell脚 ...
- Linux Kernel代码艺术——数组初始化
前几天看内核中系统调用代码,在系统调用向量表初始化中,有下面这段代码写的让我有点摸不着头脑: const sys_call_ptr_t sys_call_table[__NR_syscall_max+ ...
- 深入.NET平台的软件系统分成开发(1/6)
第一章软件系统的分层开发 1.1 分成架构 分成模式定义:将解决方案中功能不同的模块分到不同的项目中实现.每一层中的主键应保持内聚性,每一层都应与他下面的各层保持松耦合. 分层模式是最常见的一种架构模 ...
- [No000042]CSS 之 平时那些你不敢用的字体
CSS 之 平时那些你不敢用的字体 网上找找,无非如下一些中规中矩的结果: Windows下建议字体: 字体名称 对应英文 宋体 SimSun 黑体 SimHei 微软雅黑 Microsoft YaH ...
- 取文件MD5 WINAPI
#include <windows.h> #include <wincrypt.h> #include <stdio.h> BOOL GetFileHash(LPC ...
- Golang gzip的压缩和解压
package src import ( "bytes" "compress/gzip" ) func GzipEncode(in []byte) ([]byt ...
- CentOS 6.5 PPTPD VPN服务器安装,解决807等问题。
需要两个组件: ppp pptpd 需要配置的地方有三处: /etc/pptpd.conf /etc/ppp/options.pptpd /etc/ppp/chap-secrets 需要开启IP转发: ...
- Windows phone应用开发[21]-图片性能优化
在windows phone 中常在列表中会常包含比较丰富文字和图片混排数据信息. 针对列表数据中除了谈到listbox等控件自身数据虚拟化问题外.虽然wp硬件设备随着SDK 8.0 发布得到应用可使 ...