Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树
F. st-Spanning Tree
题目连接:
http://codeforces.com/contest/723/problem/F
Description
You are given an undirected connected graph consisting of n vertices and m edges. There are no loops and no multiple edges in the graph.
You are also given two distinct vertices s and t, and two values ds and dt. Your task is to build any spanning tree of the given graph (note that the graph is not weighted), such that the degree of the vertex s doesn't exceed ds, and the degree of the vertex t doesn't exceed dt, or determine, that there is no such spanning tree.
The spanning tree of the graph G is a subgraph which is a tree and contains all vertices of the graph G. In other words, it is a connected graph which contains n - 1 edges and can be obtained by removing some of the edges from G.
The degree of a vertex is the number of edges incident to this vertex.
Input
The first line of the input contains two integers n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ min(400 000, n·(n - 1) / 2)) — the number of vertices and the number of edges in the graph.
The next m lines contain the descriptions of the graph's edges. Each of the lines contains two integers u and v (1 ≤ u, v ≤ n, u ≠ v) — the ends of the corresponding edge. It is guaranteed that the graph contains no loops and no multiple edges and that it is connected.
The last line contains four integers s, t, ds, dt (1 ≤ s, t ≤ n, s ≠ t, 1 ≤ ds, dt ≤ n - 1).
Output
If the answer doesn't exist print "No" (without quotes) in the only line of the output.
Otherwise, in the first line print "Yes" (without quotes). In the each of the next (n - 1) lines print two integers — the description of the edges of the spanning tree. Each of the edges of the spanning tree must be printed exactly once.
You can output edges in any order. You can output the ends of each edge in any order.
If there are several solutions, print any of them.
Sample Input
3 3
1 2
2 3
3 1
1 2 1 1
Sample Output
Yes
3 2
1 3
Hint
题意
给你一个无向图,问你能不能找到一颗生成树,使得这个生成树包含S点和T点,且S点的度数不超过DS,T点的度数不超过DT
题解:
我们首先把S点和T点都拿走,然后跑一个生成树,那么现在的图就是一个森林了。
首先我们让S和T都连到同一个连通块去。
然后再贪心的去连,S优先连T不能够连接的连通块,再让T连接S不能连接的连通块,再去连接都能够连接的连通块。
其实感觉上是一个乱搞题[二哈]
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
vector<pair<int,int> >ans;
vector<int>E[maxn];
int s,t,ds,dt,fa[maxn],vis[maxn],n,m,link1[maxn],link2[maxn];
vector<int> c;
int fi(int x)
{
return fa[x]==x?x:fa[x]=fi(fa[x]);
}
void uni(int x,int y)
{
x=fi(x),y=fi(y);
fa[x]=y;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
for(int i=1;i<=n;i++)
fa[i]=i;
scanf("%d%d%d%d",&s,&t,&ds,&dt);
for(int i=1;i<=n;i++)
{
if(i==s||i==t)continue;
for(int j=0;j<E[i].size();j++)
{
int v=E[i][j];
if(v==s||v==t)continue;
if(fi(i)!=fi(v))
{
ans.push_back(make_pair(i,v));
uni(i,v);
}
}
}
int flag = 0;
for(int i=0;i<E[s].size();i++)
{
int v=E[s][i];
link1[fi(E[s][i])]=1;
}
for(int i=0;i<E[t].size();i++)
{
int v=E[t][i];
link2[fi(E[t][i])]=1;
}
if(!flag)
{
for(int i=0;i<E[t].size();i++)
{
int v=E[t][i];
if(link1[fi(v)])
{
vis[fi(v)]=1;
dt--;
ans.push_back(make_pair(t,v));
uni(t,v);
break;
}
}
for(int i=0;i<E[s].size();i++)
{
int v=E[s][i];
if(vis[v])
{
ds--;
ans.push_back(make_pair(s,v));
uni(s,v);
break;
}
}
}
for(int i=0;i<E[s].size();i++)
{
if(!link2[E[s][i]]&&ds&&fi(s)!=fi(E[s][i]))
{
ans.push_back(make_pair(s,E[s][i]));
uni(s,E[s][i]);
ds--;
}
}
for(int i=0;i<E[t].size();i++)
{
if(!link1[E[t][i]]&&dt&&fi(t)!=fi(E[t][i]))
{
ans.push_back(make_pair(t,E[t][i]));
uni(t,E[t][i]);
dt--;
}
}
for(int i=0;i<E[s].size();i++)
{
if(ds&&fi(s)!=fi(E[s][i]))
{
ans.push_back(make_pair(s,E[s][i]));
uni(s,E[s][i]);
ds--;
}
}
for(int i=0;i<E[t].size();i++)
{
if(dt&&fi(t)!=fi(E[t][i]))
{
ans.push_back(make_pair(t,E[t][i]));
uni(t,E[t][i]);
dt--;
}
}
if(fi(s)!=fi(t))
{
for(int i=0;i<E[s].size();i++)
{
if(E[s][i]==t)
{
uni(s,t);
ans.push_back(make_pair(s,t));
}
}
}
if(ans.size()==n-1)
{
cout<<"Yes"<<endl;
for(int i=0;i<ans.size();i++)
cout<<ans[i].first<<" "<<ans[i].second<<endl;
}
else
cout<<"No"<<endl;
}
Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树的更多相关文章
- Codeforces Round #375 (Div. 2) F. st-Spanning Tree
传送门 分析:构造题.可以这么想:先把s,t两个点去掉,把剩下的点先并查集合并.这样会出现个集合:, , 个剩余集合.那么个集合中先把只能与或中一个相连的连起来,如果这样已经超出了要求,那么就不能构造 ...
- Codeforces Round #486 (Div. 3) F. Rain and Umbrellas
Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #501 (Div. 3) F. Bracket Substring
题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- Codeforces Round #271 (Div. 2) F. Ant colony (RMQ or 线段树)
题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...
- Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...
- Codeforces Round #524 (Div. 2) F. Katya and Segments Sets(主席树)
https://codeforces.com/contest/1080/problem/F 题意 有k个区间,区间的种类有n种,有m个询问(n,m<=1e5,k<=3e5),每次询问a,b ...
- Codeforces Round #525 (Div. 2) F. Ehab and a weird weight formula
F. Ehab and a weird weight formula 题目链接:https://codeforces.com/contest/1088/problem/F 题意: 给出一颗点有权值的树 ...
随机推荐
- c# yield关键字原理详解
c# yield关键字的用法 1.yield实现的功能 yield return: 先看下面的代码,通过yield return实现了类似用foreach遍历数组的功能,说明yield return也 ...
- kombu源码Producer收获一
celery内置了kombu库,看了一下kombu的源码,从官网最简单的一个例子来分析---消息发布,源码如下: from __future__ import absolute_import, uni ...
- AngularJs入门篇-控制器的加深理解基础篇
下面做的是一个更新时间的效果,每一秒钟就会更新一下,视图中会显示出当前的时间 下面的这个例子中,SceondController函数将接受两个参数,既该DOM元素的$scope和$timeout. ...
- [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)
[BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...
- Sortable.js
拖拽的时候主要由这几个事件完成, ondragstart 事件:当拖拽元素开始被拖拽的时候触发的事件,此事件作用在被拖曳元素上 ondragenter 事件:当拖曳元素进入目标元素的时候触发的事件,此 ...
- Ubuntu 12.04安装后无法boot
解决方法是: 在选择启动项时, U盘会有两种启动方式: UEFI和非UEFI的. 用非UEFI进入live CD安装系统后无法启动, 用UEFI重装后问题解决.
- Ubuntu14.04搭建Android O编译环境
一.搭建环境 官方参考文档: 1.代号.标签和版本号 2.Factory Images 3.Driver Binaries 4.工具链 软硬件版本: 1.系统平台:I5-8500T+8G+1T,Ub ...
- mysql主键的缺少导致备库hang
最近线上频繁的出现slave延时的情况,经排查发现为用户在删除数据的时候,由于表主键的主键的缺少,同时删除条件没有索引,或或者删除的条件过滤性极差,导致slave出现hang住,严重的影响了生产环境的 ...
- STS热部署,springboot项目中修改代码不用重新启动服务
方法如下: 1.在pom文件中引入 devtools 依赖: <dependency> <groupId>org.springframework.boot</grou ...
- React-Native 之 TabBarIOS
前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...