JZYZOJ 2041 快速数论变换 NTT 多项式
http://172.20.6.3/Problem_Show.asp?id=2041
https://blog.csdn.net/ggn_2015/article/details/68922404 代码
https://blog.csdn.net/zz_1215/article/details/40430041 证明
这道题里只用快速幂就好了,抄的代码用的exgcd求的逆元,所以我也用的exgcd(权当复习了,exgcd倒推回去的时候记着只需要联立等式,每次自己推exgcd都会想太多……),其实费马小定理求逆元更方便啊,提供代码的人怎么肥四。
NTT和FFT差不多但是因为是在mod意义下的所以求的单位复根不是很一样(具体见证明和代码),其他地方除了需要mod一下都差不多。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<vector>
#include<complex>
using namespace std;
#define LL long long
const int maxn=;
LL ans[maxn]={},p;
LL a[maxn]={},b[maxn]={};
int rev[maxn]={}; int s,bit;
void exgcd(LL aa,LL bb,LL &x,LL &y){
if(!bb){x=;y=;return;}
exgcd(bb,aa%bb,x,y);
LL z=x;
x=y;y=z-((int)(aa/bb))*y;
}
inline LL getit(LL aa,LL bb){
LL x,y; exgcd(aa,bb,x,y);
x%=bb; while(x<)x+=bb;
return x;
}
inline LL getpow(LL x,LL k){
if(k<){k=-k; x=getit(x,p);}
LL z=;
while(k){
if(k&)z=(z*x)%p;
x=(x*x)%p;
k>>=;
}
return z;
}
inline void getrev(){ for(int i=;i<s;i++)rev[i]=((rev[i>>]>>)|((i&)<<(bit-))); }
inline void fft(LL *c,int n,int dft){
for(int i=;i<=s;i++)if(rev[i]>i)swap(c[i],c[rev[i]]);
for(int step=;step<n;step<<=){
LL w=getpow(,dft*(p-)/(step*));
for(int i=;i<n;i+=step<<){
LL z=;
for(int j=i;j<i+step;j++){
LL x=c[j],y=(c[j+step]*z)%p;
c[j]=(x+y)%p;
c[j+step]=((x-y)%p+p)%p;
z=(z*w)%p;
}
}
}
if(dft==-){
LL nn=getit(n,p);
for(int i=;i<n;i++)c[i]=(c[i]*nn)%p;
}
}
int main(){
//cd cle(0,0);Pi=2.0*acos(0.0);
int l1,l2;p=;
while(~scanf("%d%d",&l1,&l2)){
memset(a,,sizeof(a));
memset(b,,sizeof(b));
memset(ans,,sizeof(ans));
memset(rev,,sizeof(rev));
for(int i=;i<l1;i++)scanf("%lld",&a[i]);
for(int i=;i<l2;i++)scanf("%lld",&b[i]);
int n=l1+l2-;
bit=;s=; for(;s<n;++bit)s<<=;
getrev();
fft(a,s,);fft(b,s,);
for(int i=;i<s;i++)a[i]=(a[i]*b[i])%p;
fft(a,s,-);
for(int i=;i<n;i++)printf("%d ",a[i]);
printf("\n");
}
return ;
}
JZYZOJ 2041 快速数论变换 NTT 多项式的更多相关文章
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 【算法】快速数论变换(NTT)初探
[简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...
- 模板 - 数学 - 多项式 - 快速数论变换/NTT
Huffman分治的NTT,常数一般.使用的时候把多项式的系数们放进vector里面,然后调用solve就可以得到它们的乘积.注意这里默认最大长度是1e6,可能需要改变. #include<bi ...
- [快速数论变换 NTT]
先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...
- 快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...
- 快速数论变换NTT模板
51nod 1348 乘积之和 #include <cmath> #include <iostream> #include <cstdio> #include &l ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
随机推荐
- Hadoop基础-MapReduce的排序
Hadoop基础-MapReduce的排序 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce的排序分类 1>.部分排序 部分排序是对单个分区进行排序,举个 ...
- poj 2438 Children's Dining
http://poj.org/problem?id=2438 题意: 有2*N个人要坐在一张圆桌上吃饭,有的人之间存在敌对关系,安排一个座位次序,使得敌对的人不相邻. 假设每个人最多有N-1个敌人.如 ...
- bzoj千题计划178:bzoj2425: [HAOI2010]计数
http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意转化: 给定一个集合S,求S的全排列<给定排列 的排列个数 从最高位开始逐位枚举确定 ...
- [转载]NodeJS优缺点及适用场景讨论
http://www.xprogrammer.com/159.html 概述:NodeJS宣称其目标是“旨在提供一种简单的构建可伸缩网络程序的方法”,那么它的出现是为了解决什么问题呢,它有什么优缺点以 ...
- 五行代码终极完美解决从IE6到Chrome所有浏览器的position:fixed;以及闪动问题
这个方法其实已经使用很久了,之前主要在嵌入式WebQQ等产品中用过,现在拿出来分享一下吧,是目前最简洁的方式来实现ie6的position:fixed; 失效bug,以及的其他方法的闪动问题,CSS代 ...
- eclipse中可以导入其它工具编写的RobotFramework脚本吗?
在Robotframework的官方网站中,提供了非常多的编辑RF的工具.比如Ride,eclipse,sublime,notepad++等. 网上查到的资料,大部分都是Ride这个编辑工具的使用.在 ...
- Dream------Hbase--0.94版本和0.98/1.X版本api变动
Dream------Hbase--0.94版本和0.98/1.X版本api变动 网上好多说getQualifier.getValue.getRow被..Array代替了,其实并不是的. 1. Int ...
- MFC小型工具通用界面框架CLIST控件+右键菜单功能
MFC-小型工具通用界面框架 0x1 场景 由于工作需要我会写代码开发工具给客户或者同事用.代码都能实现,但写个黑乎乎的命令行工具给别人用确实显得不够专业,用别人写好的成型工具又担心有后门. 所以掌握 ...
- 直接读取修改exe文件
1. 前言 配置器的编写有很多的方式,主要是直接修改原始的受控端的程序,有的方式是把受控端和配置信息都放到控制端程序的内部,在需要配置受控端的时候直接输入配置信息,生成受控端:也有的方式是在外部直接修 ...
- The Smallest Difference
Given two array of integers(the first array is array A, the second array is arrayB), now we are goin ...