Ⅳ.Catalan数
//include<AC自动机>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
int f[];
using namespace std;
int main()
{
int n;
cin>>n;
f[]=;
f[]=;
for(int i=;i<=n;++i)
{
for(int j=;j<=n-;j++)
{
f[i]=f[j]*f[i-j+]+f[i];
}
}
cout<<f[n];
return ;
}
Ⅳ.Catalan数的更多相关文章
- Catalan数应用整理
应用一: codevs 3112 二叉树计数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 一个有n个结点的二叉树总共有 ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- Catalan数(数论)
Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要 ...
- Catalan数 && 【NOIP2003】出栈序列统计
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...
- Catalan数
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2 也可以是2,1:那么有2种: ...
- catalan数及笔试面试里那些相关的问题(转)
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...
- Catalan数推导(转载)
Raney引理: 设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均 ...
- HDU 4828 - Grids (Catalan数)
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 12个高矮不同的人,排成两排(catalan数)
问题描述: 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 这个笔试题,很YD,因为把某个递归关系隐藏得很深. 问题分析: 我们先把这12个 ...
随机推荐
- 模拟生成环境的MySQL安装方法-通用二进制方式安装
模拟生成环境的MySQL安装方法-通用二进制方式安装 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.并发响应用户请求的网络IO模型 1>.单进程 特点:一个进程响应一个请 ...
- 使用Python的turtle(海龟)模块画图
第一步:让Python引入turtle模块,引入模块就是告诉Python你想要用它. import turtle 第二步:创建画布.调用turtle中的Pen函数 t = turtle.Pen() 第 ...
- css原生变量var()
了解css/css3原生变量var 阮一峰css变量教程 深入学习css自定义属性(css变量)
- ASP.NET MVC学习(五)之MVC原理解析
ASP.NET MVC 请求生命周期 生命周期步骤概览 当我们对ASP.NET MVC网站发出一个请求的时候,会发生5个主要步骤: 步骤1:创建RouteTable 当ASP.NET应用程序第一次启动 ...
- 【ORACLE】oracl基本操作笔记
1.用命令导入导出表 C:\Users\xiang>imp bjlims/bjlims@orcl file="c:\tjlims.dmp" full=y C:\Users\x ...
- 搭建RabbitMQ集群(Docker)
前一篇搭建RabbitMQ集群(通用)只是把笔记直接移动过来了,因为我的机器硬盘已经满了,实在是开不了那么虚拟机. 还好,我的Linux中安装了Docker,这篇文章就简单介绍一下Docker中搭建R ...
- 用《舌尖2》去理解C#中的多态和开闭原则
昨天晚上看了<舌尖上的中国2>第一集,特别的感人,尤其是看到帮别人割麦子的麦客,一亩地开价200,雇主只肯给100,脸上的那种纠结和无可奈何.还有长着大眼睛的跳跳鱼,很可爱,不过最终还是被 ...
- linux中serial driver理解【转】
转自:http://blog.csdn.net/laoliu_lcl/article/details/39967225 英文文档地址:myandroid/kernel_imx/Documentatio ...
- 诡异的Linux磁盘空间被占用问题,根目录满了,df和du占用不一样【转】
新公司的测试机磁盘空间空余很小,日志很多,也很大,做个日志压缩脚本,在夜里4:30自动运行,第二天后发现磁盘空间又满了,只好删除没用的日志,清空空间,可诡异的是怎么删除没用的文件,空间还是占用很大.如 ...
- python 双层函数调用顺序
读大神代码,见到大神封装的接口很多都是采用双层函数形式. def 外层函数(外层参数) def 内层函数(内层参数) 函数体 return 值 return 内层函数 类似这样的形式,使用 外层函数( ...