Catalan数首先是由Euler在精确计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,它经常出现在组合计数问题中。
      问题的提出:在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数目用hn表示,hn即为Catalan数。例如五边形有如下五种拆分方案(图3-14),故h5=5。求对于一个任意的凸n边形相应的hn。
 

Catalan数是比较复杂的递推关系,尤其在竞赛的时候,选手很难在较短的时间里建立起正确的递推关系。当然,Catalan数类的问题也可以用搜索的方法来完成,但是,搜索的方法与利用递推关系的方法比较起来,不仅效率低,编程复杂度也陡然提高。

//include<AC自动机>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
int f[];
using namespace std;
int main()
{
int n;
cin>>n;
f[]=;
f[]=;
for(int i=;i<=n;++i)
{
for(int j=;j<=n-;j++)
{
f[i]=f[j]*f[i-j+]+f[i];
}
}
cout<<f[n];
return ;
}

Ⅳ.Catalan数的更多相关文章

  1. Catalan数应用整理

    应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有 ...

  2. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  3. Catalan数(数论)

    Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要 ...

  4. Catalan数 && 【NOIP2003】出栈序列统计

    令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...

  5. Catalan数

    先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2  也可以是2,1:那么有2种: ...

  6. catalan数及笔试面试里那些相关的问题(转)

    一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...

  7. Catalan数推导(转载)

    Raney引理: 设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均 ...

  8. HDU 4828 - Grids (Catalan数)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n ...

  9. 卡特兰数 Catalan数 ( ACM 数论 组合 )

    卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ...

  10. 12个高矮不同的人,排成两排(catalan数)

    问题描述: 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 这个笔试题,很YD,因为把某个递归关系隐藏得很深. 问题分析: 我们先把这12个 ...

随机推荐

  1. 自己写的一个Vue

    下面这里是我自己写的一个小型的vue,原理就是proxy: //Proxy天生没有prototype,因此要加上,不然extends会报错 Proxy.prototype = Proxy.protot ...

  2. Codeforces Round #519 题解

    A. Elections 题意概述 给出 \(a_1, \ldots, a_n\),求最小的 \(k (k \ge \max a_i)\), 使得 \(\sum_{i=1}^n a_i < \s ...

  3. Java SSM框架之MyBatis3(四)MyBatis之一对一、一对多、多对多

    项目搭建Springboot 1.5  pom.xml <?xml version="1.0" encoding="UTF-8"?> <pro ...

  4. 【原创】backbone1.1.0源码解析之Collection

    晚上躺在床上,继续完成对Backbone.Collection的源码解析. 首先讲讲它用来干嘛? Backbone.Collection的实例表示一个集合,是很多model组成的,如果用model比喻 ...

  5. android中实现在ImageView上随意画线涂鸦

    我实现的思路: 1.继承ImageView类 2.重写onTouchEvent方法,在ACTION_MOVE(即移动时),记录下所经过的点坐标,在ACTION_UP时(即手指离开时,这时一条线已经画完 ...

  6. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  7. python技巧 合并两个字典

    python 3.5+ 版本 In [1]: a={'x':2,'y':4} In [2]: b={'c':1,'d':3} In [3]: c={'c':3,'y':6} In [4]:  w={* ...

  8. 【网络编程】使用getnameinfo()/getaddrinfo()/InetPton()

    1.简要 从前用的网络编程函数现在又做了一定的改动,报了这么3个错误. error C4996: 'inet_ntoa': Use inet_ntop() or InetNtop() instead ...

  9. linux usb枚举过程分析之守护进程及其唤醒【转】

    转自:http://blog.csdn.net/xuelin273/article/details/38646765 usb热插拔,即usb设备可以实现即插即用,像U盘一样,插到电脑里就可以用,不用时 ...

  10. springcloud使用Zuul构建微服务网关入门

    为什么要使用微服务网关 不同的微服务一般会经过不同的网络地址,而外部客户端可能需要调用多个服务的接口才能完成一个业务需求. 如果让客户端直接与各个微服务通信,会有以下的问题: 客户端会多次请求不同的微 ...