参考:https://blog.csdn.net/qq_35644234/article/details/60875818

一.Floyd算法的介绍
    1.算法的特点:
    弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理无向图或有向图或负权(仅适合权值非负的图)的最短路径问题,同时也被用于计算有向图的传递闭包。
    2.算法的思路:
  通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。矩阵P(记录最短路的路径需要,若题目不需要求路径则不需要P数组)中的元素b[i][j],表示顶点i到顶点j经过了顶点b[i][j]。
  假设图G中顶点个数为N,则需要对矩阵D和矩阵P进行N次更新。初始时,矩阵D中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞,矩阵P的值为顶点b[i][j]的j的值。 接下来开始,对矩阵D进行N次更新。第1次更新时,如果”a[i][j]的距离” > “a[i][0]+a[0][j]”(a[i][0]+a[0][j]表示”i与j之间经过第1个顶点的距离”),则更新a[i][j]为”a[i][0]+a[0][j]”,更新b[i][j]=b[i][0]。 同理,第k次更新时,如果”a[i][j]的距离” > “a[i][k-1]+a[k-1][j]”,则更新a[i][j]为”a[i][k-1]+a[k-1][j]”,b[i][j]=b[i][k-1]。实质上是背包DP问题,最外层循环是k,表示利用前k个作为中间计算a[i][j]的最小值,本来需要三位数组a[k][i][j],因为第k次循环只会用到a[k-1][i][j],所以利用滚动数组,使用二维数组即可。更新N次之后,操作完成!时间复杂度为O(N^3),空间复杂度为O(N^2)。

  核心代码:

     for(k=;k<n;k++)
for(i=;i<n;i++)
for(j=;j<n;j++)
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j],b[i][j]=b[i][k];

  只有5行!现在你会发现这个看起来很高大上的算法很简单了,算是最短路的4个算法里最暴力的了!

  3.实例:

  题目链接:https://pintia.cn/problem-sets/1101307589335527424/problems/type/7

  题意:有n种动物,m种直接转换的咒语,且转换具有传递性,求从哪一种动物到另一种的动物的最长咒语的最小值,若不能转换到所有动物,则输出0.

  思路:Floyd算法的裸应用,将动物抽象为点,咒语长度抽象为边的权值,代码如下:

#include<bits/stdc++.h>
using namespace std; const int inf=0x3f3f3f3f;
int n,m,a,b,c;
int mp[][]; int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(i!=j) mp[i][j]=inf;
while(m--){
scanf("%d%d%d",&a,&b,&c);
mp[a][b]=c;
mp[b][a]=c;
}
for(int k=;k<=n;++k)
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(mp[i][j]>mp[i][k]+mp[k][j])
mp[i][j]=mp[i][k]+mp[k][j];
int maxi,minv=,res=inf;
for(int i=;i<=n;++i){
maxi=;
for(int j=;j<=n;++j)
if(mp[i][j]>maxi)
maxi=mp[i][j];
if(maxi<res)
res=maxi,minv=i;
}
if(minv)
printf("%d %d\n",minv,res);
else
printf("0\n");
return ;
}

Floyd算法简介的更多相关文章

  1. [图论]Floyd 算法小结

    Floyd 算法小结  By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...

  2. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  3. Floyd算法C++实现与模板题应用

    简介 Floyd算法算是最简单的算法,没有之一. 其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] }: map[i , j ...

  4. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  5. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  6. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  7. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

  8. Uvaoj 10048 - Audiophobia(Floyd算法变形)

    1 /* 题目大意: 从一个点到达另一个点有多条路径,求这多条路经中最大噪音值的最小值! . 思路:最多有100个点,然后又是多次查询,想都不用想,Floyd算法走起! */ #include< ...

  9. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

随机推荐

  1. 36. Oracle查询数据库中所有表的记录数

    select t.table_name,t.num_rows from user_tables t

  2. MVC控制器返回重定向操作

    注意:在使用Ajax请求后台时是不能在后台重定向的! 解决方案: if (userInfoService.CheckUser(username, psd, out msg)) { , msg = &q ...

  3. linux-2.6.22.6 内核源代码包的文件目录介绍

    下载一个linux-2.6.22.6.tar并解压 再其解压的文件中加入下面的bat脚本 生成当前文件的目录树脚本如下: @rem 此BAT文件名一定不能是"tree.bat",否 ...

  4. 页面中onclick事件引号问题

    第一种:html中onclick调用事件 <p id="txt" onclick="changeSize()">加括弧的changeSize()&l ...

  5. leetcode解题报告 32. Longest Valid Parentheses 动态规划DP解

    dp[i]表示以s[i]结尾的完全匹配的最大字符串的长度. dp[] = ; ; 开始递推 s[i] = ')' 的情况 先想到了两种情况: 1.s[i-1] = '(' 相邻匹配 这种情况下,dp ...

  6. 查看已打包app的entitlements文件内容

    执行以下命令: codesign -d --ent :- /path/to/the.app https://developer.apple.com/library/content/technotes/ ...

  7. SpringMVC是单例的

    spring的controller是单例还是多例,结果我傻逼的回答当然是多例,要不然controller类中的非静态变量如何保证是线程安全的,这样想起似乎是对的,但是不知道(主要是我没看过spring ...

  8. 尚硅谷springboot学习3-helloworld程序

    1.环境准备 –jdk1.8:Spring Boot 推荐jdk1.7及以上:java version "1.8.0_112" –maven3.x:maven 3.3以上版本:Ap ...

  9. colgroup中col定义表格单元格宽度

    colgroup中可以使用col来定义表格单元格宽度,可以使用像素(数字),百分比,我们来具体看看有什么不同. 先看一个最基本的:用像素(数字)表示,因为table有个宽度,这里表示占比 <ht ...

  10. spark1.6.1 on yarn搭建部署

    注:本文是建立在hadoop已经搭建完成的基础上进行的. Apache Spark是一个分布式计算框架,旨在简化运行于计算机集群上的并行程序的编写.该框架对资源调度,任务的提交.执行和跟踪,节点间的通 ...