一、准备

1.  打开sublime,新建一个echarts文件夹,新建echarts.html文件

2.  在echarts.html文件中,为ECharts准备一个Dom(id是china-map的div)

   

3.  引入echarts

  • 下载echarts.min.js文件。下载地址。<script>标签引入该文件。
  • 在线引入jquery,并在<script>标签中引入。
  • 下载china.js, 下载链接:提取码: u73w; <script>标签引入该文件。

    有一个小坑,想使用china.js必须使用echarts.min.js(即:精简版);  引入echarts.common.min.js是无效的。

         

二、配置地图

  • 地图一:(采用了echarts2的相关配置)
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <meta charset="UTF-8">
  5. <meta http-equiv="X-UA-Compatible" content="IE=EDGE">
  6. <title>ECharts</title>
  7. <!--<link rel="stylesheet" type="text/css" href="css/main.css"/>-->
  8. <script src="http://code.jquery.com/jquery-1.4.1.min.js"></script>
  9. <script src="echarts.min.js"></script>
  10. <script src="china.js"></script>
  11. <style>#china-map {width:1000px; height: 1000px;margin: auto;}</style>
  12. </head>
  13. <body>
  14. <div id="china-map"></div>
  15. <script>
  16. var myChart = echarts.init(document.getElementById('china-map'));
  17. var option = {
  18. title : {
  19. text: '订单量',
  20. subtext: '纯属虚构',
  21. x:'center'
  22. },
  23. tooltip : {//提示框组件。
  24. trigger: 'item'//数据项图形触发,主要在散点图,饼图等无类目轴的图表中使用。
  25. },
  26. legend: {
  27. orient: 'horizontal',//图例的排列方向
  28. x:'left',//图例的位置
  29. data:['订单量']
  30. },
  31.  
  32. visualMap: {//颜色的设置 dataRange
  33. x: 'left',
  34. y: 'center',
  35. splitList: [
  36. {start: 1500},
  37. {start: 900, end: 1500},
  38. {start: 310, end: 1000},
  39. {start: 200, end: 300},
  40. {start: 10, end: 200, label: '10 到 200(自定义label)'},
  41. {start: 5, end: 5, label: '5(自定义特殊颜色)', color: 'black'},
  42. {end: 10}
  43. ],
  44. // min: 0,
  45. // max: 2500,
  46. // calculable : true,//颜色呈条状
  47. text:['高','低'],// 文本,默认为数值文本
  48. color: ['#E0022B', '#E09107', '#A3E00B']
  49. },
  50. toolbox: {//工具栏
  51. show: true,
  52. orient : 'vertical',//工具栏 icon 的布局朝向
  53. x: 'right',
  54. y: 'center',
  55. feature : {//各工具配置项。
  56. mark : {show: true},
  57. dataView : {show: true, readOnly: false},//数据视图工具,可以展现当前图表所用的数据,编辑后可以动态更新。
  58. restore : {show: true},//配置项还原。
  59. saveAsImage : {show: true}//保存为图片。
  60. }
  61. },
  62. roamController: {//控制地图的上下左右放大缩小 图上没有显示
  63. show: true,
  64. x: 'right',
  65. mapTypeControl: {
  66. 'china': true
  67. }
  68. },
  69. series : [
  70. {
  71. name: '订单量',
  72. type: 'map',
  73. mapType: 'china',
  74. roam: false,//是否开启鼠标缩放和平移漫游
  75. itemStyle:{//地图区域的多边形 图形样式
  76. normal:{//是图形在默认状态下的样式
  77. label:{
  78. show:true,//是否显示标签
  79. textStyle: {
  80. color: "rgb(249, 249, 249)"
  81. }
  82. }
  83. },
  84. emphasis:{//是图形在高亮状态下的样式,比如在鼠标悬浮或者图例联动高亮时
  85. label:{show:true}
  86. }
  87. },
  88. top:"3%",//组件距离容器的距离
  89. data:[
  90. {name: '北京',value: Math.round(Math.random()*2000)},
  91. {name: '天津',value: Math.round(Math.random()*2000)},
  92. {name: '上海',value: Math.round(Math.random()*2000)},
  93. {name: '重庆',value: Math.round(Math.random()*2000)},
  94. {name: '河北',value: 0},
  95. {name: '河南',value: Math.round(Math.random()*2000)},
  96. {name: '云南',value: 5},
  97. {name: '辽宁',value: 305},
  98. {name: '黑龙江',value: Math.round(Math.random()*2000)},
  99. {name: '湖南',value: 200},
  100. {name: '安徽',value: Math.round(Math.random()*2000)},
  101. {name: '山东',value: Math.round(Math.random()*2000)},
  102. {name: '新疆',value: Math.round(Math.random()*2000)},
  103. {name: '江苏',value: Math.round(Math.random()*2000)},
  104. {name: '浙江',value: Math.round(Math.random()*2000)},
  105. {name: '江西',value: Math.round(Math.random()*2000)},
  106. {name: '湖北',value: Math.round(Math.random()*2000)},
  107. {name: '广西',value: Math.round(Math.random()*2000)},
  108. {name: '甘肃',value: Math.round(Math.random()*2000)},
  109. {name: '山西',value: Math.round(Math.random()*2000)},
  110. {name: '内蒙古',value: Math.round(Math.random()*2000)},
  111. {name: '陕西',value: Math.round(Math.random()*2000)},
  112. {name: '吉林',value: Math.round(Math.random()*2000)},
  113. {name: '福建',value: Math.round(Math.random()*2000)},
  114. {name: '贵州',value: Math.round(Math.random()*2000)},
  115. {name: '广东',value: Math.round(Math.random()*2000)},
  116. {name: '青海',value: Math.round(Math.random()*2000)},
  117. {name: '西藏',value: Math.round(Math.random()*2000)},
  118. {name: '四川',value: Math.round(Math.random()*2000)},
  119. {name: '宁夏',value: Math.round(Math.random()*2000)},
  120. {name: '海南',value: Math.round(Math.random()*2000)},
  121. {name: '台湾',value: Math.round(Math.random()*2000)},
  122. {name: '香港',value: Math.round(Math.random()*2000)},
  123. {name: '澳门',value: Math.round(Math.random()*2000)}
  124. ]
  125. }
  126. ]
  127. };
  128. myChart.setOption(option);
  129. myChart.on('mouseover', function (params) {
  130. var dataIndex = params.dataIndex;
  131. console.log(params);
  132. });
  133. </script>
  134. </body>
  135. </html>

效果图:

  

  • 地图二:(采用了echarts4的相关配置)
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <meta charset="UTF-8">
  5. <meta http-equiv="X-UA-Compatible" content="IE=EDGE">
  6. <title>ECharts</title>
  7. <!--<link rel="stylesheet" type="text/css" href="css/main.css"/>-->
  8. <script src="http://code.jquery.com/jquery-1.4.1.min.js"></script>
  9. <script src="echarts.min.js"></script>
  10. <script src="china.js"></script>
  11. <style>#china-map {width:1000px; height: 1000px;margin: auto;}</style>
  12. </head>
  13. <body>
  14. <div id="china-map"></div>
  15. <script>
  16.  
  17. var myChart = echarts.init(document.getElementById('china-map'));
  18. var geoCoordMap = {
  19. "海门":[121.15,31.89],
  20. "鄂尔多斯":[109.781327,39.608266],
  21. "招远":[120.38,37.35],
  22. "舟山":[122.207216,29.985295],
  23. "齐齐哈尔":[123.97,47.33],
  24. "盐城":[120.13,33.38],
  25. "赤峰":[118.87,42.28],
  26. "青岛":[120.33,36.07],
  27. "乳山":[121.52,36.89],
  28. "金昌":[102.188043,38.520089],
  29. "泉州":[118.58,24.93],
  30. "莱西":[120.53,36.86],
  31. "日照":[119.46,35.42],
  32. "胶南":[119.97,35.88],
  33. "南通":[121.05,32.08],
  34. "拉萨":[91.11,29.97],
  35. "云浮":[112.02,22.93],
  36. "梅州":[116.1,24.55],
  37. "文登":[122.05,37.2],
  38. "上海":[121.48,31.22],
  39. "攀枝花":[101.718637,26.582347],
  40. "威海":[122.1,37.5],
  41. "承德":[117.93,40.97],
  42. "厦门":[118.1,24.46],
  43. "汕尾":[115.375279,22.786211],
  44. "潮州":[116.63,23.68],
  45. "丹东":[124.37,40.13],
  46. "太仓":[121.1,31.45],
  47. "曲靖":[103.79,25.51],
  48. "烟台":[121.39,37.52],
  49. "福州":[119.3,26.08],
  50. "瓦房店":[121.979603,39.627114],
  51. "即墨":[120.45,36.38],
  52. "抚顺":[123.97,41.97],
  53. "玉溪":[102.52,24.35],
  54. "张家口":[114.87,40.82],
  55. "阳泉":[113.57,37.85],
  56. "莱州":[119.942327,37.177017],
  57. "湖州":[120.1,30.86],
  58. "汕头":[116.69,23.39],
  59. "昆山":[120.95,31.39],
  60. "宁波":[121.56,29.86],
  61. "湛江":[110.359377,21.270708],
  62. "揭阳":[116.35,23.55],
  63. "荣成":[122.41,37.16],
  64. "连云港":[119.16,34.59],
  65. "葫芦岛":[120.836932,40.711052],
  66. "常熟":[120.74,31.64],
  67. "东莞":[113.75,23.04],
  68. "河源":[114.68,23.73],
  69. "淮安":[119.15,33.5],
  70. "泰州":[119.9,32.49],
  71. "南宁":[108.33,22.84],
  72. "营口":[122.18,40.65],
  73. "惠州":[114.4,23.09],
  74. "江阴":[120.26,31.91],
  75. "蓬莱":[120.75,37.8],
  76. "韶关":[113.62,24.84],
  77. "嘉峪关":[98.289152,39.77313],
  78. "广州":[113.23,23.16],
  79. "延安":[109.47,36.6],
  80. "太原":[112.53,37.87],
  81. "清远":[113.01,23.7],
  82. "中山":[113.38,22.52],
  83. "昆明":[102.73,25.04],
  84. "寿光":[118.73,36.86],
  85. "盘锦":[122.070714,41.119997],
  86. "长治":[113.08,36.18],
  87. "深圳":[114.07,22.62],
  88. "珠海":[113.52,22.3],
  89. "宿迁":[118.3,33.96],
  90. "咸阳":[108.72,34.36],
  91. "铜川":[109.11,35.09],
  92. "平度":[119.97,36.77],
  93. "佛山":[113.11,23.05],
  94. "海口":[110.35,20.02],
  95. "江门":[113.06,22.61],
  96. "章丘":[117.53,36.72],
  97. "肇庆":[112.44,23.05],
  98. "大连":[121.62,38.92],
  99. "临汾":[111.5,36.08],
  100. "吴江":[120.63,31.16],
  101. "石嘴山":[106.39,39.04],
  102. "沈阳":[123.38,41.8],
  103. "苏州":[120.62,31.32],
  104. "茂名":[110.88,21.68],
  105. "嘉兴":[120.76,30.77],
  106. "长春":[125.35,43.88],
  107. "胶州":[120.03336,36.264622],
  108. "银川":[106.27,38.47],
  109. "张家港":[120.555821,31.875428],
  110. "三门峡":[111.19,34.76],
  111. "锦州":[121.15,41.13],
  112. "南昌":[115.89,28.68],
  113. "柳州":[109.4,24.33],
  114. "三亚":[109.511909,18.252847],
  115. "自贡":[104.778442,29.33903],
  116. "吉林":[126.57,43.87],
  117. "阳江":[111.95,21.85],
  118. "泸州":[105.39,28.91],
  119. "西宁":[101.74,36.56],
  120. "宜宾":[104.56,29.77],
  121. "呼和浩特":[111.65,40.82],
  122. "成都":[104.06,30.67],
  123. "大同":[113.3,40.12],
  124. "镇江":[119.44,32.2],
  125. "桂林":[110.28,25.29],
  126. "张家界":[110.479191,29.117096],
  127. "宜兴":[119.82,31.36],
  128. "北海":[109.12,21.49],
  129. "西安":[108.95,34.27],
  130. "金坛":[119.56,31.74],
  131. "东营":[118.49,37.46],
  132. "牡丹江":[129.58,44.6],
  133. "遵义":[106.9,27.7],
  134. "绍兴":[120.58,30.01],
  135. "扬州":[119.42,32.39],
  136. "常州":[119.95,31.79],
  137. "潍坊":[119.1,36.62],
  138. "重庆":[106.54,29.59],
  139. "台州":[121.420757,28.656386],
  140. "南京":[118.78,32.04],
  141. "滨州":[118.03,37.36],
  142. "贵阳":[106.71,26.57],
  143. "无锡":[120.29,31.59],
  144. "本溪":[123.73,41.3],
  145. "克拉玛依":[84.77,45.59],
  146. "渭南":[109.5,34.52],
  147. "马鞍山":[118.48,31.56],
  148. "宝鸡":[107.15,34.38],
  149. "焦作":[113.21,35.24],
  150. "句容":[119.16,31.95],
  151. "北京":[116.46,39.92],
  152. "徐州":[117.2,34.26],
  153. "衡水":[115.72,37.72],
  154. "包头":[110,40.58],
  155. "绵阳":[104.73,31.48],
  156. "乌鲁木齐":[87.68,43.77],
  157. "枣庄":[117.57,34.86],
  158. "杭州":[120.19,30.26],
  159. "淄博":[118.05,36.78],
  160. "鞍山":[122.85,41.12],
  161. "溧阳":[119.48,31.43],
  162. "库尔勒":[86.06,41.68],
  163. "安阳":[114.35,36.1],
  164. "开封":[114.35,34.79],
  165. "济南":[117,36.65],
  166. "德阳":[104.37,31.13],
  167. "温州":[120.65,28.01],
  168. "九江":[115.97,29.71],
  169. "邯郸":[114.47,36.6],
  170. "临安":[119.72,30.23],
  171. "兰州":[103.73,36.03],
  172. "沧州":[116.83,38.33],
  173. "临沂":[118.35,35.05],
  174. "南充":[106.110698,30.837793],
  175. "天津":[117.2,39.13],
  176. "富阳":[119.95,30.07],
  177. "泰安":[117.13,36.18],
  178. "诸暨":[120.23,29.71],
  179. "郑州":[113.65,34.76],
  180. "哈尔滨":[126.63,45.75],
  181. "聊城":[115.97,36.45],
  182. "芜湖":[118.38,31.33],
  183. "唐山":[118.02,39.63],
  184. "平顶山":[113.29,33.75],
  185. "邢台":[114.48,37.05],
  186. "德州":[116.29,37.45],
  187. "济宁":[116.59,35.38],
  188. "荆州":[112.239741,30.335165],
  189. "宜昌":[111.3,30.7],
  190. "义乌":[120.06,29.32],
  191. "丽水":[119.92,28.45],
  192. "洛阳":[112.44,34.7],
  193. "秦皇岛":[119.57,39.95],
  194. "株洲":[113.16,27.83],
  195. "石家庄":[114.48,38.03],
  196. "莱芜":[117.67,36.19],
  197. "常德":[111.69,29.05],
  198. "保定":[115.48,38.85],
  199. "湘潭":[112.91,27.87],
  200. "金华":[119.64,29.12],
  201. "岳阳":[113.09,29.37],
  202. "长沙":[113,28.21],
  203. "衢州":[118.88,28.97],
  204. "廊坊":[116.7,39.53],
  205. "菏泽":[115.480656,35.23375],
  206. "合肥":[117.27,31.86],
  207. "武汉":[114.31,30.52],
  208. "大庆":[125.03,46.58]
  209. };
  210.  
  211. var convertData = function (data) {
  212. var res = [];
  213. for (var i = 0; i < data.length; i++) {
  214. var geoCoord = geoCoordMap[data[i].name];
  215. if (geoCoord) {
  216. res.push(geoCoord.concat(data[i].value));
  217. }
  218. }
  219. return res;
  220. };
  221.  
  222. option = {
  223. backgroundColor: '#041452',
  224. title: {
  225. text: '',
  226. subtext: '',
  227. left: 'center',
  228. textStyle: {
  229. color: '#fff'
  230. }
  231. },
  232. tooltip: {
  233. trigger: 'item'
  234. },
  235. legend: {
  236. orient: 'vertical',
  237. top: 'bottom',
  238. left: 'right',
  239. data:[ ],
  240. textStyle: {
  241. color: '#fff'
  242. }
  243. },
  244. visualMap: {
  245. color: ['#79fbd7'],
  246. min: 0,
  247. max: 300,
  248. splitNumber: 5,
  249. textStyle: {
  250. color: '#fff'
  251. }
  252. },
  253. geo: {
  254. map: 'china',
  255. label: {
  256. emphasis: {
  257. show: false
  258. }
  259. },
  260. itemStyle: {
  261. normal: {
  262. areaColor: '#0b2364',
  263. borderColor: '#4385c7'
  264. },
  265. emphasis: {
  266. areaColor: '#414a58'
  267. }
  268. }
  269. },
  270. series: [
  271. {
  272. name: 'pm2.5',
  273. type: 'scatter',
  274. coordinateSystem: 'geo',
  275. data: convertData([
  276. {name: "海门", value: 9},
  277. {name: "鄂尔多斯", value: 12},
  278. {name: "招远", value: 12},
  279. {name: "舟山", value: 12},
  280. {name: "齐齐哈尔", value: 14},
  281. {name: "盐城", value: 15},
  282. {name: "赤峰", value: 16},
  283. {name: "青岛", value: 18},
  284. {name: "乳山", value: 18},
  285. {name: "金昌", value: 19},
  286. {name: "泉州", value: 21},
  287. {name: "莱西", value: 21},
  288. {name: "日照", value: 21},
  289. {name: "胶南", value: 22},
  290. {name: "南通", value: 23},
  291. {name: "拉萨", value: 24},
  292. {name: "云浮", value: 24},
  293. {name: "梅州", value: 25},
  294. {name: "文登", value: 25},
  295. {name: "上海", value: 25},
  296. {name: "攀枝花", value: 25},
  297. {name: "威海", value: 25},
  298. {name: "承德", value: 25},
  299. {name: "厦门", value: 26},
  300. {name: "汕尾", value: 26},
  301. {name: "潮州", value: 26},
  302. {name: "丹东", value: 27},
  303. {name: "太仓", value: 27},
  304. {name: "曲靖", value: 27},
  305. {name: "烟台", value: 28},
  306. {name: "福州", value: 29},
  307. {name: "瓦房店", value: 30},
  308. {name: "即墨", value: 30},
  309. {name: "抚顺", value: 31},
  310. {name: "玉溪", value: 31},
  311. {name: "张家口", value: 31},
  312. {name: "阳泉", value: 31},
  313. {name: "莱州", value: 32},
  314. {name: "湖州", value: 32},
  315. {name: "汕头", value: 32},
  316. {name: "昆山", value: 33},
  317. {name: "宁波", value: 33},
  318. {name: "湛江", value: 33},
  319. {name: "揭阳", value: 34},
  320. {name: "荣成", value: 34},
  321. {name: "连云港", value: 35},
  322. {name: "葫芦岛", value: 35},
  323. {name: "常熟", value: 36},
  324. {name: "东莞", value: 36},
  325. {name: "河源", value: 36},
  326. {name: "淮安", value: 36},
  327. {name: "泰州", value: 36},
  328. {name: "南宁", value: 37},
  329. {name: "营口", value: 37},
  330. {name: "惠州", value: 37},
  331. {name: "江阴", value: 37},
  332. {name: "蓬莱", value: 37},
  333. {name: "韶关", value: 38},
  334. {name: "嘉峪关", value: 38},
  335. {name: "广州", value: 38},
  336. {name: "延安", value: 38},
  337. {name: "太原", value: 39},
  338. {name: "清远", value: 39},
  339. {name: "中山", value: 39},
  340. {name: "昆明", value: 39},
  341. {name: "寿光", value: 40},
  342. {name: "盘锦", value: 40},
  343. {name: "长治", value: 41},
  344. {name: "深圳", value: 41},
  345. {name: "珠海", value: 42},
  346. {name: "宿迁", value: 43},
  347. {name: "咸阳", value: 43},
  348. {name: "铜川", value: 44},
  349. {name: "平度", value: 44},
  350. {name: "佛山", value: 44},
  351. {name: "海口", value: 44},
  352. {name: "江门", value: 45},
  353. {name: "章丘", value: 45},
  354. {name: "肇庆", value: 46},
  355. {name: "大连", value: 47},
  356. {name: "临汾", value: 47},
  357. {name: "吴江", value: 47},
  358. {name: "石嘴山", value: 49},
  359. {name: "沈阳", value: 50},
  360. {name: "苏州", value: 50},
  361. {name: "茂名", value: 50},
  362. {name: "嘉兴", value: 51},
  363. {name: "长春", value: 51},
  364. {name: "胶州", value: 52},
  365. {name: "银川", value: 52},
  366. {name: "张家港", value: 52},
  367. {name: "三门峡", value: 53},
  368. {name: "锦州", value: 54},
  369. {name: "南昌", value: 54},
  370. {name: "柳州", value: 54},
  371. {name: "三亚", value: 54},
  372. {name: "自贡", value: 56},
  373. {name: "吉林", value: 56},
  374. {name: "阳江", value: 57},
  375. {name: "泸州", value: 57},
  376. {name: "西宁", value: 57},
  377. {name: "宜宾", value: 58},
  378. {name: "呼和浩特", value: 58},
  379. {name: "成都", value: 58},
  380. {name: "大同", value: 58},
  381. {name: "镇江", value: 59},
  382. {name: "桂林", value: 59},
  383. {name: "张家界", value: 59},
  384. {name: "宜兴", value: 59},
  385. {name: "北海", value: 60},
  386. {name: "西安", value: 61},
  387. {name: "金坛", value: 62},
  388. {name: "东营", value: 62},
  389. {name: "牡丹江", value: 63},
  390. {name: "遵义", value: 63},
  391. {name: "绍兴", value: 63},
  392. {name: "扬州", value: 64},
  393. {name: "常州", value: 64},
  394. {name: "潍坊", value: 65},
  395. {name: "重庆", value: 66},
  396. {name: "台州", value: 67},
  397. {name: "南京", value: 67},
  398. {name: "滨州", value: 70},
  399. {name: "贵阳", value: 71},
  400. {name: "无锡", value: 71},
  401. {name: "本溪", value: 71},
  402. {name: "克拉玛依", value: 72},
  403. {name: "渭南", value: 72},
  404. {name: "马鞍山", value: 72},
  405. {name: "宝鸡", value: 72},
  406. {name: "焦作", value: 75},
  407. {name: "句容", value: 75},
  408. {name: "北京", value: 79},
  409. {name: "徐州", value: 79},
  410. {name: "衡水", value: 80},
  411. {name: "包头", value: 80},
  412. {name: "绵阳", value: 80},
  413. {name: "乌鲁木齐", value: 84},
  414. {name: "枣庄", value: 84},
  415. {name: "杭州", value: 84},
  416. {name: "淄博", value: 85},
  417. {name: "鞍山", value: 86},
  418. {name: "溧阳", value: 86},
  419. {name: "库尔勒", value: 86},
  420. {name: "安阳", value: 90},
  421. {name: "开封", value: 90},
  422. {name: "济南", value: 92},
  423. {name: "德阳", value: 93},
  424. {name: "温州", value: 95},
  425. {name: "九江", value: 96},
  426. {name: "邯郸", value: 98},
  427. {name: "临安", value: 99},
  428. {name: "兰州", value: 99},
  429. {name: "沧州", value: 100},
  430. {name: "临沂", value: 103},
  431. {name: "南充", value: 104},
  432. {name: "天津", value: 105},
  433. {name: "富阳", value: 106},
  434. {name: "泰安", value: 112},
  435. {name: "诸暨", value: 112},
  436. {name: "郑州", value: 113},
  437. {name: "哈尔滨", value: 114},
  438. {name: "聊城", value: 116},
  439. {name: "芜湖", value: 117},
  440. {name: "唐山", value: 119},
  441. {name: "平顶山", value: 119},
  442. {name: "邢台", value: 119},
  443. {name: "德州", value: 120},
  444. {name: "济宁", value: 120},
  445. {name: "荆州", value: 127},
  446. {name: "宜昌", value: 130},
  447. {name: "义乌", value: 132},
  448. {name: "丽水", value: 133},
  449. {name: "洛阳", value: 134},
  450. {name: "秦皇岛", value: 136},
  451. {name: "株洲", value: 143},
  452. {name: "石家庄", value: 147},
  453. {name: "莱芜", value: 148},
  454. {name: "常德", value: 152},
  455. {name: "保定", value: 153},
  456. {name: "湘潭", value: 154},
  457. {name: "金华", value: 157},
  458. {name: "岳阳", value: 169},
  459. {name: "长沙", value: 175},
  460. {name: "衢州", value: 177},
  461. {name: "廊坊", value: 193},
  462. {name: "菏泽", value: 194},
  463. {name: "合肥", value: 229},
  464. {name: "武汉", value: 273},
  465. {name: "大庆", value: 279}
  466. ]),
  467. symbolSize:8,
  468. label: {
  469. normal: {
  470. show: false
  471. },
  472. emphasis: {
  473. show: true
  474. }
  475. },
  476. itemStyle: {
  477. emphasis: {
  478. borderColor: '',
  479. borderWidth: 1
  480. }
  481. }
  482. }
  483. ]
  484. }
  485. myChart.setOption(option);
  486.  
  487. </script>
  488. </body>
  489. </html>

效果图:

echarts.js制作中国地图的更多相关文章

  1. 用echarts.js制作中国地图,点击对应的省市链接到指定页面

    这里使用的是ECharts 2,因为用EChart 3制作的地图上的省市文字标识会有重叠,推测是引入的地图文件china.js,绘制文字的坐标方面的问题,所以,这里还是使用老版本. ECharts 2 ...

  2. D3.js 制作中国地图 .net 公共基础类

    D3.js 制作中国地图 from:  http://d3.decembercafe.org/pages/map/index.html GeoJSON is a format for encoding ...

  3. 使用echarts简单制作中国地图,echarts中国地图

    网站需要一张中国地图,并且鼠标经过某个省份,该省份的省份名字显示,而且该省份的地区会变色显示. 第一种方法: 将每个省份的图片定位(先隐藏),拼合成一张中国地图,然后再定位省份名称,鼠标经过省份名字, ...

  4. D3.js 制作中国地图

    from:  http://d3.decembercafe.org/pages/map/index.html GeoJSON is a format for encoding a variety of ...

  5. 如何使用highmaps制作中国地图

    如何使用highmaps制作中国地图 文章目录 Highmaps 所需文件 地图初始化代码 highmaps 渲染讲解 highmaps 中国各城市坐标的json文件 highmaps 线上DEMO ...

  6. 使用highmaps制作中国地图

    Highmaps 所需文件 http://code.highcharts.com/maps/highmaps.js(地图渲染的核心文件 必须引用)http://code.highcharts.com/ ...

  7. echarts.制作中国地图,点击对应的省市链接到该省份的详细介绍

    今天花了一天的时间,用echart弄了一个效果,是从中国地图点进去身份并把改省份的数据渲染出来的效果,刚开始完全没有头绪,只能硬着头皮去看百度echart的api,和博客,看了半天,好家伙,终于给我找 ...

  8. 16、vue引入echarts,划中国地图

    vue引入echarts npm install echarts --save main.js引入 import echarts from 'echarts' Vue.prototype.$echar ...

  9. 利用d3.js绘制中国地图

    d3.js是一个比較强的数据可视化js工具. 利用它画了一幅中国地图,例如以下图所看到的: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3ZhcDE=/ ...

随机推荐

  1. 结对编程——paperOne基于java的四则运算 功能改进

    项目成员:张金生     张政 由于新的需求,原本使用JSP的实现方式目前改为Java实现,即去除了B/S端. 需求分析: 1.四则运算要满足整数运算.分数运算两种: 2.运算题目随机,并且可以打印题 ...

  2. Glow 效果材质

    转自:http://blog.csdn.net/panda1234lee/article/details/60960846 算法较简单,首先来看 Base color 部分: 就是将对事先准备好的三张 ...

  3. linux下开启某个端口的方法:可用于SQL

  4. delphi正则表达式学习笔记(三)

    Delphi 中经常使用的正则表达式 在 Delphi 中使用正则表达式, 目前 PerlRegEx 应该是首选, 准备彻底而细致地研究它.  官方网站: http://www.regular-e x ...

  5. (转)C#.NET WINFORM应用程序中控制应用程序只启动一次

    原文地址 :http://www.cnblogs.com/emanlee/archive/2009/08/31/1557379.html using System; using System.Thre ...

  6. Google C++命令规范

    最近发现自己在开发程序的过程中,经常会将好几种命名规范进行混用,这样使得程序的可读性下降,于是乎依然决定学习并使用Google的命令规范,并且坚持使用. copy from https://www.c ...

  7. jQuery操作DOM节点的方法总结

    1.parent():获得当前匹配元素集合中每个元素的父元素,该方法只会向上一级对 DOM 树进行遍历 $('li.item-a').parent().css('background-color', ...

  8. vue的异步组件按需加载

    当build打包后,app.js过大的时候,可以考虑用异步组件的方式. import HomeHeader from "./components/Header"; import H ...

  9. Python-第三方模块requests快速入手

    首先确认一下 Requests 已经安装 Requests 是最新的版本 如果没有安装requests,请按照下面的方式安装 安装requests window和Linux环境下都可以输入 $ pip ...

  10. [Unity插件]Lua行为树(十):通用行为和通用条件节点

    在行为树中,需要扩展的主要是行为节点和条件节点.一般来说,每当要创建一个节点时,就要新建一个节点文件.而对于一些简单的行为节点和条件节点,为了去掉新建文件的过程,可以写一个通用版本的行为节点和条件节点 ...