4877 Non-Decreasing Digits

A number is said to be made up ofnon-decreasing digitsif all the digits to theleftof any digit is lessthan or equal to that digit. For example, the four-digit number 1234 is composed of digits that arenon-decreasing. Some other four-digit numbers that are composed of non-decreasingdigits are 0011, 1111,1112, 1122, 2223. As it turns out, there are exactly 715 four-digit numbers composed of non-decreasingdigits.Notice that leading zeroes are required: 0000, 0001, 0002 are all valid four-digit numbers withnon-decreasingdigits.For this problem, you will write a program that determines how many such numbers there are witha specified number of digits.

Input

The first line of input contains a single integerP(1P1000), which is the number of data sets thatfollow. Each data set is a single line that contains the data set number, followed by a space, followedby a decimal integer giving the number of digitsN(1N64).

Output

For each data set there is one line of output. It contains the data set number followed by a single space,followed by the number of N digit values that are composed entirely ofnon-decreasingdigits.

Sample Input
3
1 2
2 3
3 4

Sample Output
1 55
2 220
3 715

题目意思:求n位非递减数列的个数,可以有相同的数。

解题思路:数位DP,dp[i][j]表示i位,最高位是j的符合题意的个数。

之前博客参考 :https://www.cnblogs.com/wkfvawl/p/9438921.html

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long int
using namespace std;
ll dp[][];
void DPlist()
{
ll i,j,k;
memset(dp,,sizeof());
for(i=;i<=;i++)
{
dp[][i]=;
}
for(i=;i<=;i++)///dp[i][j]表示i位,最高位是j的符合题意的个数
{
for(j=;j<=;j++)
{
for(k=;k<=j;k++)///把上一个位数小于等于j的dp全加起来
{
dp[i+][j]+=dp[i][k];
}
}
dp[i][]=;///用来存总和
for(j=;j<=;j++)
{
dp[i][]+=dp[i][j];
}
}
}
int main()
{
ll t,e,n,i;
scanf("%d",&t);
DPlist();
while(t--)
{
scanf("%lld%lld",&e,&n);
printf("%lld %lld\n",e,dp[n][]);
}
}

UVALive 4877 Non-Decreasing Digits 数位DP的更多相关文章

  1. BNUOJ 52325 Increasing or Decreasing 数位dp

    传送门:BNUOJ 52325 Increasing or Decreasing题意:求[l,r]非递增和非递减序列的个数思路:数位dp,dp[pos][pre][status] pos:处理到第几位 ...

  2. UVALive - 6575 Odd and Even Zeroes 数位dp+找规律

    题目链接: http://acm.hust.edu.cn/vjudge/problem/48419 Odd and Even Zeroes Time Limit: 3000MS 问题描述 In mat ...

  3. UVALive - 6872 Restaurant Ratings 数位dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/113727 Restaurant Ratings Time Limit: 3000MS 题意 给你一个长度为n ...

  4. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

  5. codeforces Hill Number 数位dp

    http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits:  5000 MS   Memory Limits: ...

  6. SRM 510 2 250TheAlmostLuckyNumbersDivTwo(数位dp)

    SRM 510 2 250TheAlmostLuckyNumbersDivTwo Problem Statement John and Brus believe that the digits 4 a ...

  7. HDU 5787 K-wolf Number 数位DP

    K-wolf Number Problem Description   Alice thinks an integer x is a K-wolf number, if every K adjacen ...

  8. HDU(4734),数位DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=4734 F(x) Time Limit: 1000/500 MS (Java/Others) ...

  9. hdu----(5045)Contest(数位dp)

    Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

随机推荐

  1. Audit log report

  2. 安装composer出现链接补上的问题

    下载 Composer-Setup.exe 后安装出错: Composer Download Error Connection Error [ERR_CONNECTION]: Unable to co ...

  3. Java源码分析(1):二分查找 + 循环递归实现

    源代码 源码地址 public static int binarySearch(int[] a, int key) { return binarySearch0(a, 0, a.length, key ...

  4. JavaSript模块规范 - AMD规范与CMD规范介绍[转]

    原文地址:http://blog.chinaunix.net/uid-26672038-id-4112229.html JavaSript模块化 在了解AMD,CMD规范前,还是需要先来简单地了解下什 ...

  5. docker容器下tomcat 不向catalina.out输出日志解决以及支持中文字符集

    docker容器下tomcat 不向catalina.out输出日志解决 去掉 & 符号,直接 使用 ENTRYPOINT ["/data/tomcat/bin/startup.sh ...

  6. vue实例的属性和方法

    vue实例的属性和方法 1. 属性 vm.$el #指定要绑定的元素 vm.$data #Vue 实例的数据对象 vm.$options #获取自定义属性的值 new Vue({ customOpti ...

  7. kubernetes 的wen pod 无法连接 mysql 的pod

    1.分析 查看源代码 既然无法建立连接,那先看下是如何建立连接的.登录到myweb的docker容器里面,查看index.jsp文件,主要内容如下: Class.forName("com.m ...

  8. log下一次改版优化别人代码的事

    有次接到个PM要改版一个功能的UI设计,前端童鞋还没敲定页面的时候,我先看了看这个功能的后台,我擦...简直是惨不忍睹..对PM来说是改版UI,对我这么有点代码洁癖的来说就是优化代码. 首先我能肯定的 ...

  9. LCD驱动应该怎么写?–基于stm32F407 [复制链接]

    够用的硬件能用的代码使用的教程 (拷贝过来的代码有点乱,请下载附件查看文档) 资料下载地址:https://pan.baidu.com/s/1bHUVe6X6tymktUHk_z91cA 网络上配套S ...

  10. CAN总线优势

    CAN总线优势 RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 首先,CAN控制器工作于多主方式,网络中 的各节点都可根据总线访问优先权(取 ...