利用十字链表压缩稀疏矩阵(c++)-- 数据结构
题目:
如果一个矩阵中,0元素占据了矩阵的大部分,那么这个矩阵称为“稀疏矩阵”。对于稀疏矩阵,传统的二维数组存储方式,会使用大量的内存来存储0,从而浪费大量内存。为此,可以用三元组的方式来存放一个稀疏矩阵。
对于一个给定的稀疏矩阵,设第r行、第c列值为v,且v不等于0,则这个值可以表示为 <r,v,c>。这个表示方法就称为三元组。那么,对于一个包含N个非零元素的稀疏矩阵,就可以用一个由N个三元组组成的表来存储了。
如:{<1, 1, 9>, <2, 3, 5>, <10, 20, 3>}就表示这样一个矩阵A:A[1,1]=9,A[2,3]=5,A[10,20]=3。其余元素为0。
要求查找某个非零数据是否在稀疏矩阵中,如果存在则输出其所在的行列号,不存在则输出ERROR。
输入格式:
共有N+2行输入: 第一行是三个整数m, n, N(N<=500),分别表示稀疏矩阵的行数、列数和矩阵中非零元素的个数,数据之间用空格间隔; 随后N行,输入稀疏矩阵的非零元素所在的行、列号和非零元素的值; 最后一行输入要查询的非0数据k。
输出格式:
如果存在则输出其行列号,不存在则输出ERROR。
输入样例:
在这里给出一组输入。例如:
10 29 3
2 18 -10
7 1 98
8 10 2
2
输出样例:
在这里给出相应的输出。例如:
8 10
分析: 在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵。
为了更好地定义稀疏矩阵,引入稀疏因子 t =num/(n*m)[其中num为矩阵中非零元素个数,n为矩阵行数,m为矩阵列数],
当t<=0.05时,该矩阵即可称作稀疏矩阵。 压缩稀疏矩阵的常见方法有两种:
1.利用三元组表压缩
优点:①代码简易;
②占用空间相对较小
缺点:①无法实现随机存储;
②在进行对矩阵的操作(如矩阵的乘法/加法)矩阵中数据改变后,需要重新定义三元组表,不具有通用性,不灵活。 2.利用十字链表压缩
优点:①能够实现随机存储;
②对于任意矩阵具有通用性
缺点:①代码实现困难;
②占用空间相对较大 分析之后我们发现,相对于利用三元组表压缩稀疏矩阵,利用十字链表压缩应用的范围更为广阔,更具有实际操作意义。
这里我们采取十字链表方式进行压缩。
十字链表核心(难点):
1.节点定义
(1)非零元素节点:
我们可以知道,十字链表说到底还是若干个循环链表,那么在创建十字链表之前我们需要构建一个合适的节点
所需信息:行(row)、列(col)、值(val),该节点又要连接行的下一个节点(*right)以及列的下一个节点(*down) 如图:
(2)头节点定义
头节点与非零元素不同的是节点中row的位置存放的是原矩阵所有行数,col的位置存放的是原矩阵所有列数,且头节点需要指向一个指针数组(用于表示行列链表头)。
所需信息:行(row)、列(col)、指向指针数组*h[]的指针(*next) 如图:
(3)行列链表头节点定义:
行列链表头的表示其实是利用指针数组实现的(存放指针的数组)*h[],这里为了方便,我们称为行列头指针。
所需信息:指向下一个行列链表头节点的指针(*next)、指向该行第一个非零元素的指针(*right)、指向该列第一个非零元素的指针(*down) 如图:
综上所述,为了实现定义节点操作时的一致性,我们会将节点定义如下图:
2.行列链表头节点在十字链表中的理解
连线两端一个看上去像行头、另一个看上去像列头,其实这两个都是同一个*h[]。
我看到有建立两个指针数组的博客 https://blog.csdn.net/zhuyi2654715/article/details/6729783,即行链表头数组和列链表头数组,
想必是误解了图的意思。 我是那么理解的:
3.当行/列中没有非零元素时的表示 前面提到,这是由若干个循环链表构成的十字链表,那么在空行/列的时候可以用行列头指针指向它自己本身来表示。
同理,当为行/列末时,最后一个节点的指针right/down必然是指向行/列头节点的。
代码:
#include<iostream>
using namespace std; //定义十字链表节点
typedef struct matrinode{
int i, j;
struct matrinode *right, *down;
union{
int value;
struct matrinode *next;
}tag;
}matrinode; //创建十字链表
//传入值:头节点指针,原矩阵行数,原矩阵列数
void createlist(matrinode *&head, int row, int column)
{
int max = (row>column)?row:column;//取行列的最大值
//定义指针数组(用于表示行列头),p、q、r辅助指针
matrinode *h[max], *p, *q, *r;
head = new matrinode;//申请头节点空间
head->i = row;//将行数、列数存入头节点
head->j = column; r = head; //行列链表头
int count;
for(count = ; count<max+; count++){//为了表示矩阵的行数和列数,这里从1开始计数
h[count] = new matrinode;//给行列链表头申请空间
h[count]->down = h[count]->right = h[count];
h[count]->i = h[count]->j = ;
r->tag.next = h[count];//head->h[1]->h[2]->...->h[max]
r = h[count];
}
r->tag.next = head;//最后一个行列链表头节点指向head int num;//非零元素个数
int i, j, v;
cin>>num;
for(count=; count<num+; count++){
p = new matrinode;
cin>>i>>j>>v;
p->i = i;
p->j = j;
p->tag.value = v; /*这里插入非零元素有两种情况:(以在某行插入为例)
①当行链表为空(q->right == h[count])—或改元素列序数最大时 -> 插入到最后;
②非以上情况 -> 插入到某两节点中间
*/ //行插入
q = h[count];
while(q->right != h[count] && q->right->j < j){
q = q->right;
}
p->right = q->right;
q->right = p;
//列插入
q = h[count];
while(q->down != h[count] && q->down->i < i){
q = q->down;
}
p->down = q->down;
q->down = p;
} } //查找是否有符合条件的值
void search(matrinode *head)
{
int value;//输入需要查找的值
cin>>value; matrinode *h, *p;//定义两个辅助结点
h = new matrinode;
p = new matrinode; h = head->tag.next;//h指向h[1]
p = h->right;//p指向h[1]第一行第一个元素
int flag = ;//flag == 0表示找不到匹配值
int i, j;//若找到满足条件的值时,i、j存放该值的行和列 while(h->tag.next != head){//当前行不是最后一行时
if(p == h){//若该行为空
h = h->tag.next;//移到下一行
p = h->right;
}else{//若该行非空
if(p->tag.value != value){//若p节点存放的值!=需要查找的值时
p = p->right;//p移动到该行下一个
}else{//找到满足条件的值时
i = p->i;
j = p->j;
flag = ;
cout<<i<<" "<<j;
break;
}
}
}
if(flag == ){
cout<<"ERROR";
} } int main(){
matrinode *head;
int row, column;
cin>>row>>column;
createlist(head, row, column); search(head);
return ;
}
总结: 为了学会十字链表,查阅了很多资料,每份资料都不尽相同。这份代码是我打的第四份代码,因为参考的博客都不太一样,
比如有的博客会用到struct来定义一个十字链表,有的博客更喜欢用class囊括所有。从一开始的照猫画虎,到逐渐理解算法的核心思想,
需要经过不断的锻造,这也可能是我与代码互相折磨、互相成长的过程吧!
参考资料: 1.https://blog.csdn.net/xiangxizhishi/article/details/79119532 2.https://blog.csdn.net/TheLegendOfZelda/article/details/80221922
利用十字链表压缩稀疏矩阵(c++)-- 数据结构的更多相关文章
- 利用十字链表存储树结构(便于同时求出某一点的入度与出度)------C语言实现
#include <stdio.h> #include<conio.h> #include<stdlib.h> /* 利用十字链表存储有向图,可用于同时查找某个顶点 ...
- javascript实现数据结构:稀疏矩阵的十字链表存储表示
当矩阵的非零个数和位置在操作过程中变化大时,就不宜采用顺序存储结构来表示三元组的线性表.例如,在作“将矩阵B加到矩阵A上”的操作时,由于非零元的插入或删除将会引起A.data中元素的移动.为此,对这种 ...
- 数据结构C语言版 有向图的十字链表存储表示和实现
/*1wangxiaobo@163.com 数据结构C语言版 有向图的十字链表存储表示和实现 P165 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h> ...
- 稀疏矩阵的加法(用十字链表实现A=A+B)
描写叙述: 输入两个稀疏矩阵A和B,用十字链表实现A=A+B,输出它们相加的结果. 输入: 第一行输入四个正整数,各自是两个矩阵的行m.列n.第一个矩阵的非零元素的个数t1和第二个矩阵的非零元素的个数 ...
- 数据结构之BF算法,kmp算法,三元组,十字链表总结
在这一章中,老师教了我们四种数据结构:BF算法,kmp算法,三元组和十字链表:还给我们讲了2019年团体天体赛中T1-8的AI题 1.对于BF和kmp算法,老师除了在课堂上讲解算法的主要核心思想外,还 ...
- 数据结构之---C++语言实现图的十字链表存储表示
近期一直忙着考研复习,非常久都没有更新博客了.今天写一篇数据结构的存储. //有向图的十字链表存储表示 //杨鑫 #include <iostream> #include <cstd ...
- [game]十字链表的AOI算法实现
AOI主要有九宫格.灯塔和十字链表的算法实现.本文阐述十字链表的实现和尝试. 1. 基本原理 根据二维地图,将其分成x轴和y轴两个链表.如果是三维地图,则还需要维护多一个z轴的链表.将对象的坐标值按照 ...
- 十字链表 Codeforces Round #367 E Working routine
// 十字链表 Codeforces Round #367 E Working routine // 题意:给你一个矩阵,q次询问,每次交换两个子矩阵,问最后的矩阵 // 思路:暴力肯定不行.我们可以 ...
- 图->存储结构->十字链表
文字描述 十字链表是有向图的另一种链式存储结构. 在十字链表中,对应于有向图中每一条弧有一个结点,对应于每个顶点也有一个结点.这些结点的结构如下所示: 在弧结点中有5个域: 尾域tailvex和头域h ...
随机推荐
- Python实例---爬取下载喜马拉雅音频文件
PyCharm下python爬虫准备 打开pycharm 点击设置 点击项目解释器,再点击右边+号 搜索相关库并添加,例如:requests 喜马拉雅全网递归下载 打开谷歌/火狐浏览器,按F12打开开 ...
- 【史上最全】申请配置阿里云服务器,并部署IIS和开发环境,项目上线经验
最近一年在实验室做web后端开发,涉及到一些和服务器搭建及部署上线项目的相关经验,写个帖子和小伙伴们分享,一同进步! 首先谈一下,为什么越来越多中小型公司/实验室,部署项目的趋势都是在云服务器而不是普 ...
- 乘风破浪:LeetCode真题_041_First Missing Positive
乘风破浪:LeetCode真题_041_First Missing Positive 一.前言 这次的题目之所以说是难,其实还是在于对于某些空间和时间的限制. 二.First Missing Posi ...
- 自己写的开源MVC-easyMVC分享
简介 基本风格是按照spring mvc做的,在后期会加入一些新的特性,封装成易于自己项目使用的mvc框架. github地址: https://github.com/tangyanbo/easymv ...
- 包(package),继承
1.包(package) 1)为何用包 包用于管理程序中的类,主要解决类同名问题(它的唯一性),也可以看作是现实生活中的目录. 2)作用 —可以解决包的同名问题. —可以更好地管理类,有了包的概念,使 ...
- Invoking "cmake" failed报错处理
运行$ pip install -U rosdep rosinstall_generator wstool rosinstall six vcstools运行完成后再重新编译
- DOTNET Core 命令
dotnet 命令目录: 1.dotnet-new 2.dotnet-restore 3.dotnet-build 4.dotnet-run 5.dotnet-test 6.dotnet-pack 7 ...
- VBA 连接,提醒 rs AS new adodb.recordset 的变量未定义
解决方法: 菜单-工程-引用Microsoft ActiveX Data Objects 2.x Library 定位……msado15.dll
- 深入解析Java中的装箱和拆箱
自己主动装箱和拆箱问题是Java中一个老生常谈的问题了,今天我们就来一些看一下装箱和拆箱中的若干问题.本文先讲述装箱和拆箱最主要的东西,再来看一以下试笔试中常常遇到的与装箱.拆箱相关的问题. 下面是本 ...
- 【Nodejs】Browsersync同步浏览器测试
说明文档:http://www.browsersync.cn/docs/ 安装命令: ①全局安装 npm install -g browser-sync ②局部/本地安装 npm install br ...