▶ 书中第四章部分程序,加上自己补充的代码,图的深度优先遍历

● 无向图的广度优先遍历,有向 / 无向图代码仅若干方法名不同

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Graph;
import edu.princeton.cs.algs4.Stack;
import edu.princeton.cs.algs4.Queue; public class class01
{
private static final int INFINITY = Integer.MAX_VALUE;
private boolean[] marked; // 顶点是否已被遍历
private int[] edgeTo; // 每个顶点在 s - v 路径中的父顶点
private int[] distTo; // 每个顶点在 s - v 路径中的路径长 public class01(Graph G, int s)
{
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = INFINITY;
nonRecursiveBFS(G, s);
//assert check(G, s);
} private void nonRecursiveBFS(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
distTo[s] = 0;
marked[s] = true;
for (q.enqueue(s); !q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} private void nonRecursiveBFS(Graph G, Iterable<Integer> sources) // 以迭代器元素为起点列表进行遍历
{
Queue<Integer> q = new Queue<Integer>();
for (int s : sources)
{
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
for (;!q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} public boolean marked(int v)
{
return marked[v];
} public int distTo(int v)
{
return distTo[v];
} public Iterable<Integer> pathTo(int v)
{
if (!marked(v))
return null;
Stack<Integer> path = new Stack<Integer>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
} private boolean check(Graph G, int s)
{
if (distTo[s] != 0)
{
StdOut.println("\n<check> error distance of s.\n");
return false;
}
for (int v = 0; v < G.V(); v++)
{
for (int w : G.adj(v))
{
if (marked(v) != marked(w)) // 检查边正确性
{
StdOut.println("edge " + v + "-" + w);
StdOut.println("marked(" + v + ") = " + marked(v));
StdOut.println("marked(" + w + ") = " + marked(w));
return false;
}
if (marked(v) && (distTo[w] > distTo[v] + 1)) // 检查顶点 v 相连的顶点的距离正确性
{
StdOut.println("edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
}
for (int w = 0; w < G.V(); w++)
{
if (!marked(w) || w == s)
continue;
int v = edgeTo[w];
if (distTo[w] != distTo[v] + 1) // 逐边检查距离正确性
{
StdOut.println("shortest path edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
return true;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
Graph G = new Graph(in);
class01 search = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (search.marked(v))
{
StdOut.printf("%d to %d (%d): ", s, v, search.distTo(v));
for (int x : search.pathTo(v))
{
if (x == s)
StdOut.print(x);
else
StdOut.print("-" + x);
}
StdOut.println();
}
else
StdOut.printf("%d to %d (-): not connected\n", s, v);
}
}
}

● 有向图广度优先遍历

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.Stack;
import edu.princeton.cs.algs4.Queue; public class class01
{
private static final int INFINITY = Integer.MAX_VALUE;
private boolean[] marked;
private int[] edgeTo;
private int[] distTo; public class01(Digraph G, int s)
{
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = INFINITY;
nonRecursiveBFS(G, s);
} private void nonRecursiveBFS(Digraph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
distTo[s] = 0;
marked[s] = true;
for (q.enqueue(s); !q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} private void nonRecursiveBFS(Digraph G, Iterable<Integer> sources)
{
Queue<Integer> q = new Queue<Integer>();
for (int s : sources)
{
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
for (;!q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} public boolean marked(int v)
{
return marked[v];
} public int distTo(int v)
{
return distTo[v];
} public Iterable<Integer> pathTo(int v)
{
if (!marked(v))
return null;
Stack<Integer> path = new Stack<Integer>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
Digraph G = new Digraph(in);
class01 search = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (search.marked(v))
{
StdOut.printf("%d to %d (%d): ", s, v, search.distTo(v));
for (int x : search.pathTo(v))
{
if (x == s)
StdOut.print(x);
else
StdOut.print("->" + x);
}
StdOut.println();
}
else
StdOut.printf("%d to %d (-): not connected\n", s, v);
}
}
}

《算法》第四章部分程序 part 5的更多相关文章

  1. 《算法》第四章部分程序 part 19

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...

  2. 《算法》第四章部分程序 part 18

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...

  3. 《算法》第四章部分程序 part 16

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...

  4. 《算法》第四章部分程序 part 15

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...

  5. 《算法》第四章部分程序 part 14

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...

  6. 《算法》第四章部分程序 part 10

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...

  7. 《算法》第四章部分程序 part 9

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...

  8. 《算法》第四章部分程序 part 17

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...

  9. 《算法》第四章部分程序 part 13

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...

  10. 《算法》第四章部分程序 part 12

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...

随机推荐

  1. delphi Int64Rec 应用实例

    以下代码可以看到 Int64Rec <--> Int64 procedure TForm1.Button2Click(Sender: TObject); var ii1,ii2,ii3:I ...

  2. windows server core 远程桌面

    要允许其它计算机透过远程桌面登入Server Core主机,我们需要先调整注册机码,并开启对应的防火墙端口号首先,我们开启登录编辑程序(regedit.exe),找到HKEY_LOCAL_MACHIN ...

  3. spring boot编译项目打jar包

    <build> <plugins> <!--jar包打包--> <plugin> <groupId>org.springframework. ...

  4. 批量输出dwg文件中的文本

    公司来了一批图纸,里面有一部分内容需要复制到excel中,几百张来图每一张都 手工复制,烦死了.编写一个CAD插件,自动导出文本,简单记录在下面. 想法是: 1.输入命令,选择所有dwg文件 2.挨个 ...

  5. MSSQL 2012 密钥

    MICROSOFT SQL SERVER 2012 企业核心版激活码序列号: FH666-Y346V-7XFQ3-V69JM-RHW28 MICROSOFT SQL SERVER 2012 商业智能版 ...

  6. windows cmd下ssh连接免密码问题解决

    windows 7 cmd下 ssh -T username@serverip 免密码连接成功 有的同学在windows下开发,并且在windows下安装了git for windows,这些资源已经 ...

  7. ssh调试及指定私钥

    1.ssh调试 ssh -vT username@ip[or hostname] T表示测试,v显示详细信息 也可以配置config文件(在~/.ssh/config)指定用户名和密码 如 [gerr ...

  8. WAP用户评论简单实现瀑布流加载

    wap端经常会遇到产品或者评论的加载,但是分页的体验不是很好,所以选择通过js实现瀑布流加载方式. 第一步:需要动态加载的主要内容,这里需要动态加载的是li标签的内容 <ul class=&qu ...

  9. 图像处理PILLOW的使用

    1.安装 pip install Pillow 2.使用 1)图片缩放 from PIL import Imageim = Image.open('dog.jpg') w,h = im.size #获 ...

  10. PAT 乙级 1071 小赌怡情(15 分)

    1071 小赌怡情(15 分) 常言道“小赌怡情”.这是一个很简单的小游戏:首先由计算机给出第一个整数:然后玩家下注赌第二个整数将会比第一个数大还是小:玩家下注 t 个筹码后,计算机给出第二个数.若玩 ...