编程作业三

作业链接:Pattern Recognition & Checklist

我的代码:BruteCollinearPoints.java & FastCollinearPoints.java & Point.java

问题简介

计算机视觉涉及分析视觉图像中的模式并重建产生它们的现实世界对象。该过程通常分为两个阶段:特征检测和模式识别。特征检测涉及选择图像的重要特征;模式识别涉及发现特征中的模式。我们将研究一个涉及点和线段的特别简单的模式识别问题。这种模式识别出现在许多其他应用中,例如统计数据分析。

The problem. Given a set of n distinct points in the plane, find every(maximal) line segment that connects a subset of 4 or more of the points.

给定一些点,要求找到所有至少包含四个点的线段。

任务摘要

Point data type. Create an immutable data type Point that represents a point in the plane by implementing the following API:

public class Point implements Comparable<Point> {
public Point(int x, int y) // constructs the point (x, y) public void draw() // draws this point
public void drawTo(Point that) // draws the line segment from this point to that point
public String toString() // string representation public int compareTo(Point that) // compare two points by y-coordinates, breaking ties by x-coordinates
public double slopeTo(Point that) // the slope between this point and that point
public Comparator<Point> slopeOrder() // compare two points by slopes they make with this point
}

实现表示点的数据类型,要求完成后三个方法,详细参见:specification

Brute force. Write a program BruteCollinearPoints.java that examines 4 points at a time and checks whether they all lie on the same line segment, returning all such line segments. To check whether the 4 points p, q, r, and s are collinear, check whether the three slopes between p and q, between p and r, and between p and s are all equal.

public class BruteCollinearPoints {
public BruteCollinearPoints(Point[] points) // finds all line segments containing 4 points
public int numberOfSegments() // the number of line segments
public LineSegment[] segments() // the line segments
}

除了暴力检测每四个点是否共线(\(n^{4}\)),还有更快的做法,对点 P:

  • 把 P 当做原点。

  • 其它点按和点 P 的斜率(slope)排序。

  • 检查是否有三个点(或者更多)有同样的斜率。如果有,那这些点和点 P 就构成目标线段。

对其它的点,重复上述过程,就能找到所有目标线段,因为排序把斜率一样的点聚在一起。而这算法更快是因为瓶颈操作是排序,排序是 nlgn,最后是 \(n^{2}lgn\),也比 \(n^{4}\) 好得多。

Write a program FastCollinearPoints.java that implements this algorithm.

public class FastCollinearPoints {
public FastCollinearPoints(Point[] points) // finds all line segments containing 4 or more points
public int numberOfSegments() // the number of line segments
public LineSegment[] segments() // the line segments
}

问题分析

仍然按照 Checklist 里建议的编程步骤,先实现 Point.java。下载 Point.java,完成要求实现的方法。实际上,specification 里说得挺详细的,没什么问题,大概主要是让我们熟悉下可比较接口和比较器。

  • The compareTo() method should compare points by their y-coordinates, breaking ties by their x-coordinates. Formally, the invoking point (x0, y0) is less than the argument point (x1, y1) if and only if either y0 < y1 or if y0 = y1 and x0 < x1.

  • The slopeTo() method should return the slope between the invoking point (x0, y0) and the argument point (x1, y1), which is given by the formula (y1 − y0) / (x1 − x0). Treat the slope of a horizontal line segment as positive zero; treat the slope of a vertical line segment as positive infinity; treat the slope of a degenerate line segment (between a point and itself) as negative infinity.

  • The slopeOrder() method should return a comparator that compares its two argument points by the slopes they make with the invoking point (x0, y0). Formally, the point (x1, y1) is less than the point (x2, y2) if and only if the slope (y1 − y0) / (x1 − x0) is less than the slope (y2 − y0) / (x2 − x0). Treat horizontal, vertical, and degenerate line segments as in the slopeTo() method.

  • Do not override the equals() or hashCode() methods.

slopeTo() 方法两个点连线水平时返回正零,Checklist 里也有解释。

What does it mean for slopeTo() to return positive zero?

Java (and the IEEE 754 floating-point standard) define two representations of zero: negative zero and positive zero.

double a = 1.0;
double x = (a - a) / a; // positive zero ( 0.0)
double y = (a - a) / -a; // negative zero (-0.0)

Note that while (x == y) is guaranteed to be true, Arrays.sort() treats negative zero as strictly less than positive zero. Thus, to make the specification precise, we require you to return positive zero for horizontal line segments. Unless your program casts to the wrapper type Double (either explicitly or via autoboxing), you probably will not notice any difference in behavior; but, if your program does cast to the wrapper type and fails only on (some) horizontal line segments, this may be the cause.

接着实现 BruteCollinearPoints.java ,逻辑比较简单,还给了很多提示,也没问题。

To form a line segment, you need to know its endpoints. One approach is to form a line segment only if the 4 points are in ascending order (say, relative to the natural order), in which case, the endpoints are the first and last points.

Hint: don't waste time micro-optimizing the brute-force solution. Though, there are two easy opportunities. First, you can iterate through all combinations of 4 points (N choose 4) instead of all 4 tuples (N^4), saving a factor of 4! = 24. Second, you don't need to consider whether 4 points are collinear if you already know that the first 3 are not collinear; this can save you a factor of N on typical inputs.

把点排下序,线段的起始点自然就是遍历的头尾,甚至也教我们怎么排序。

How do I sort a subarray in Java?

Arrays.sort(a, lo, hi) sorts the subarray from a[lo] to a[hi-1] according to the natural order of a[]. You can use a Comparator as the fourth argument to sort according to an alternate order.

于是,最后的 FastCollinearPoints.java 相对复杂些。我是用了两个排序,一开始和暴力算法一样先按自然顺序排,就是先比 y 再比 x 那种,另一个是遍历点的时候按和该点的斜率排。斜率一样计数的就 ++,不小于三个再看这点的自然顺序是不是最小,是最小才将其和自然顺序最大的组成线段存起来。通过这种方法,获得线段的起始点,避免重复加入线段。

测试结果

Programming Assignment 3: Pattern Recognition的更多相关文章

  1. Algorithms : Programming Assignment 3: Pattern Recognition

    Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...

  2. Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)

    题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...

  3. Pattern Recognition and Machine Learning-02-1.0-Introduction

    Introduction The problem of searching for patterns in data is a fundamental one and has a long and s ...

  4. Pattern Recognition And Machine Learning读书会前言

    读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲 ...

  5. Pattern Recognition and Machine Learning (preface translation)

    前言 鉴于机器学习产生自计算机科学,模式识别却起源于工程学.然而,这些活动能被看做同一个领域的两个方面,并且他们同时在这过去的十年间经历了本质上的发展.特别是,当图像模型已经作为一个用来描述和应用概率 ...

  6. 获取Avrix上Computer Vision and Pattern Recognition的论文,进一步进行统计分析。

    此文主要记录我在18年寒假期间,收集Avrix论文的总结 寒假生活题外   在寒假期间,爸妈每天让我每天跟着他们6点起床,一起吃早点收拾,每天7点也就都收拾差不多.   早晨的时光是人最清醒的时刻,而 ...

  7. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

  8. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  9. talib 中文文档(十二):Pattern Recognition Functions K线模式识别,形态识别

    Pattern Recognition Functions K线模式识别,形态识别 CDL2CROWS - Two Crows 函数名:CDL2CROWS 名称:Two Crows 两只乌鸦 简介:三 ...

随机推荐

  1. .30-浅析webpack源码之doResolve事件流(2)

    这里所有的插件都对应着一个小功能,画个图整理下目前流程: 上节是从ParsePlugin中出来,对'./input.js'入口文件的路径做了处理,返回如下: ParsePlugin.prototype ...

  2. thinkphp 返回上一页的两种方式

    <div > <a class="details_back" href="{:U('Admin/SinglePageManagement/index') ...

  3. Weex 学习文档、跳转路径、控制台输出、we转js汇总

    最近在学习阿里的weex框架,网上教程真是不少,但是有用的确实是少的很.其中大多数都是讲如何配置移动端的,很少有讲到weex语法的.要知道,如果真需要用weex编写js页面的话,很有可能是移动端开发者 ...

  4. (六)彻底理解synchronized

    1.sychronized简介 在学习知识之前,我们先来看一个现象 public class SynchronizedDemo implements Runnable { private static ...

  5. Spring Security(一)

    Spring Security(一) 基本原理 前言 Spring Security核心功能 认证(你是谁) 授权(你能干什么) 攻击防护(防止伪造身份) Srping Security基本原理 项目 ...

  6. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  7. linux_shell_入门

    shell编程入门: 程序员标配:第一个shell脚本 输出 ---- " Hello World !!" 1.先创建一个hello.sh脚本文件 vi hello.sh 然后在输 ...

  8. CPU单核多核区别【转载】

    CPU个数.CPU核心数.CPU线程数 我们在选购电脑的时候,CPU是一个需要考虑到核心因素,因为它决定了电脑的性能等级.CPU从早期的单核,发展到现在的双核,多核.CPU除了核心数之外,还有线程数之 ...

  9. Linux常用基本命令(cat)

    cat命令 作用:连接多个文件并且打印到屏幕输出,或者重定向到其他文件,也可以用来查看显示单个文件,或者多个文件. 格式: cat [option] [file] 1,最简单的用法,直接跟文件名称,查 ...

  10. 08:Vigenère密码

    08:Vigenère密码 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 16世纪法国外交家Blaise de Vigenère设计了一种多表密码加密算法— ...