题意

题目链接

Sol

显然整个序列的形态对询问没什么影响

设权值\(>=s\)的有\(k\)个。

我们可以让这些数每次都被选择

那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被选择

一个显然的思路是每次选最大的C个

那么只需要判断\(\sum a_i >=(c - k)*s\)即可

权值线段树维护一下

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int a[MAXN], N, M;
const int SS = MAXN * 10 + 10, Mx = 1e9 + 10;
int ls[SS], rs[SS], num[SS], tot, root;
LL sum[SS];
void update(int k) {
sum[k] = sum[ls[k]] + sum[rs[k]];
num[k] = num[ls[k]] + num[rs[k]];
}
void Modify(int &k, int l, int r, int p, int v) {
if(!k) k = ++tot;
if(l == r) {
num[k] += (v < 0 ? -1 : 1);
sum[k] += v;
return ;
}
int mid = l + r >> 1;
if(p <= mid) Modify(ls[k], l, mid, p, v);
else Modify(rs[k], mid + 1, r, p, v);
update(k);
}
int QueryNum(int k, int l, int r, int ql, int qr) {
if(!k) return 0;
if(ql <= l && r <= qr)
return num[k];
int mid = l + r >> 1;
if(ql > mid) return QueryNum(rs[k], mid + 1, r, ql, qr);
else if(qr <= mid) return QueryNum(ls[k], l, mid, ql, qr);
else return QueryNum(ls[k], l, mid, ql, qr) + QueryNum(rs[k], mid + 1, r, ql, qr);
}
LL QuerySum(int k, int l, int r, int ql, int qr) {
if(!k) return 0;
if(ql <= l && r <= qr) return sum[k];
int mid = l + r >> 1;
if(ql > mid) return QuerySum(rs[k], mid + 1, r, ql, qr);
else if(qr <= mid) return QuerySum(ls[k], l, mid, ql, qr);
else return QuerySum(ls[k], l, mid, ql, qr) + QuerySum(rs[k], mid + 1, r, ql, qr);
}
signed main() {
N = read(); M = read();
while(M--) {
char s[3]; scanf("%s", s);
int x = read(), y = read();
if(s[0] == 'U') {//a[x] = y
if(a[x]) Modify(root, 1, Mx, a[x], -a[x]);
a[x] = y;
if(y) Modify(root, 1, Mx, y, y);
} else {//choose x = c turn y = s
int k = QueryNum(1, 1, Mx, y, Mx);
LL sum = QuerySum(1, 1, Mx, 1, y - 1);
puts((sum >= 1ll * (x - k) * y) ? "TAK" : "NIE");
}
} return 0;
}
/*
7
-1 160 -2000
14 82 61 85 41 10 34
*/

洛谷P3586 [POI2015]LOG(贪心 权值线段树)的更多相关文章

  1. 洛谷P4848 崂山白花蛇草水 权值线段树+KDtree

    题目描述 神犇 \(Aleph\) 在 \(SDOI\ Round2\) 前立了一个 \(flag\):如果进了省队,就现场直播喝崂山白花蛇草水.凭借着神犇 \(Aleph\) 的实力,他轻松地进了山 ...

  2. 洛谷 P3586 [POI2015]LOG

    P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...

  3. 【BZOJ3065】带插入区间K小值 替罪羊树+权值线段树

    [BZOJ3065]带插入区间K小值 Description 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理 ...

  4. 【洛谷P3586】LOG

    题目大意:维护一个集合,支持单点修改.查询小于 X 的数的个数.查询小于 X 的数的和. 题解:学习到了动态开点线段树.对于一棵未经离散化的权值线段树来说,对于静态开点来说,过大的值域会导致不能承受的 ...

  5. 洛谷P1908 逆序对 [权值线段树]

    题目传送门 逆序对 题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的 ...

  6. 2019牛客训练赛第七场 C Governing sand 权值线段树+贪心

    Governing sand 题意 森林里有m种树木,每种树木有一定高度,并且砍掉他要消耗一定的代价,问消耗最少多少代价可以使得森林中最高的树木大于所有树的一半 分析 复杂度分析:n 1e5种树木,并 ...

  7. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  8. 权值线段树&&可持久化线段树&&主席树

    权值线段树 顾名思义,就是以权值为下标建立的线段树. 现在让我们来考虑考虑上面那句话的产生的三个小问题: 1. 如果说权值作为下标了,那这颗线段树里存什么呢? ----- 这颗线段树中, 记录每个值出 ...

  9. 主席树 【权值线段树】 && 例题K-th Number POJ - 2104

    一.主席树与权值线段树区别 主席树是由许多权值线段树构成,单独的权值线段树只能解决寻找整个区间第k大/小值问题(什么叫整个区间,比如你对区间[1,8]建立一颗对应权值线段树,那么你不能询问区间[2,5 ...

随机推荐

  1. 【flex】学习笔记/总结

    CSS3 flex布局 查看兼容情况: caniuse.com 盒子模型: content-box:平时普通盒子模型,padding/border 会使盒子变大 向外扩展 border-box:盒子模 ...

  2. 解决微信小程序要求的TLS版本必须大于等于1.2的问题

    一.环境: CentOS 6.8 nginx 1.6.0 php 7.0.10 二.背景 最近开发一个小程序,而小程序对后台接口服务器的要求是: 1.请求域名在request合法域名中 2.基于 ht ...

  3. 人工智能_机器学习——pandas - 箱型图

    箱型图对数据的展示也是非常清晰的,这是箱型图的一些代码 #导报 机器学习三剑客 import numpy as np import pandas as pd from matplotlib impor ...

  4. python互斥锁

    互斥锁 进程之间数据隔离, 但是多个进程可以共享同一块数据,比如共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如下 from mu ...

  5. One difference between AngularJS' $location and window.location

    Recenently, I encountered a problem. Client side code is: $http({ url: "/api/runtimelicense&quo ...

  6. odoo 开发基础 -- postgresql重新启动、状态查看

    场景描述: 当遇到数据库不能正常访问的时候,我们首先想到的是,查看相关的告警日志,一般先查看系统的日志,然后查看数据库的日志,Linux平台下,postgresql的日志文件存放目录在如下路径: te ...

  7. ES使用org.elasticsearch.client.transport.NoNodeAvailableException: No node available 错误解决方法

    1) 端口错 client = new TransportClient().addTransportAddress(new InetSocketTransportAddress(ipAddress, ...

  8. 字符、字符串和文本的处理之String类型

    .Net Framework中处理字符和字符串的主要有以下这么几个类: (1).System.Char类 一基础字符串处理类 (2).System.String类 一处理不可变的字符串(一经创建,字符 ...

  9. pigz 压缩

    压缩工具--pigz 压缩: tar cvf - 目录名 | pigz -9 -p 24 > file.tgz pigz:用法-9是压缩比率比较大,-p是指定cpu的核数. 解压: pigz - ...

  10. 微信正式开放内测“小程序”,不开发APP的日子真的来了?

    关注,QQ群,微信应用号社区 511389428 微信正式开放内测“小程序”,不开发APP的日子真的来了? 明星公司 缪定纯 • 2016-09-22 09:05 讨论了很久的微信应用号终于来了,不过 ...