实验设计与数据处理(大数据分析B中也用到F分布,故总结一下,加深印象)第3课小结——实验的方差分析(one-way analysis of variance)

概述

  • 实验结果\(S\)受多个因素\(A_i\)影响,但影响的程度各不相同,如何通过实验数据来确定因素的影响程度呢?其函数关系为

\[S=f(A_1,A_2,\cdots,A_n)
\tag{1}
\]

  • 方差

标准差的平方,表征\(x_i\)与\(\bar{x}\)的偏离程度

  • 方差分析(ANalysis Of VAriance,简称ANOVA

    利用实验数据与均值的偏离程度来判断各因素对实验结果影响显著性程度的方法。方差分析实质上是研究自变量(因素)与因变量(实验结果)的相互关系

  • 指标(experimental index)

衡量或考核实验效果的参数 。

  • 因素(experimental factor)

影响实验指标的条件,可控因素

  • 水平

因素的不同状态或内容

单因素实验的方差分析

单因素实验方差分析基本问题

(1)目的:检验一个因素对实验结果的影响是否显著性

单因素实验方差分析基本步骤

1)计算平均值

组内平均值(同一水平的平均值)

\[\overline{x_i}=\frac{1}{n_i}\sum_{j=1}^{n_i}{x_{ij}}
\tag{2}
\]

总平均值

\[\overline {x_i}=\frac{1}{n}\sum_{i=1}^{r}\sum_{j=1}^{n_i}{x_{ij}}
\tag{3}
\]

2)计算离差平方和

  • 总离差平方和\(SS_T\)(sum of squares for total)

\[SS_T = \sum_{i=1}^{r}{\sum_{j=1}^{n_i}({x_{ij}-\overline{x}})^2}
\tag{4}
\]

表示了各实验值与总平均值的偏差的平方和
反映了实验结果之间存在的总差异
  • 组间离差平方和 \(SS_A\) (sum of square for factor A)

\[SS_A = \sum_{i=1}^{r}{\sum_{j=1}^{n_i}({\overline{x_{i}}-\overline{x}})^2}
=\sum_{i=1}^{r}n_i({\overline{x_{i}}-\overline{x}})^2
\tag{5}
\]

反映了各组内平均值之间的差异程度
由于因素A不同水平的不同作用造成的
  • 组内离差平方和$ SS_e $(sum of square for error)

\[SS_T = \sum_{i=1}^{r}{\sum_{j=1}^{n_i}({x_{ij}-\overline{x}_i})^2}
\tag{6}
\]

反映了在各水平内,各实验值之间的差异程度
由于随机误差的作用产生
  • 三种离差平方和之间关系:

\[SS_T = SS_A + SS_e
\tag{7}
\]

3)计算自由度(degree of freedom)

  • 总自由度(\(SS_T\)对应的自由度):\(df_T=n-1\)
  • 组间自由度(\(SS_A\)对应的自由度):\(df_A=r-1\)
  • 组内自由度(\(SS_e\)对就的自由度):\(df_e=n-r\)

三者关系:\(df_T=df_A+df_e\)

4)计算平均平方

  • 均方 = 离差平方和除以对应的自由度

\[MS_A = SS_A/df_A \quad \quad MS_e = SS_e / df_e
\]

式中,\(MA_A\)——组间均方,\(MS_e\)——组内均方/误差的均方

5)F检验

\[F_A = \frac{组间均方}{组内均方}=\frac{MS_A}{MS_e}
\tag{8}
\]

  • 服从自由度为\((df_A,df_e)\)的F分布(F distribution)

  • 对于给定的显著性水平\(\alpha\),从F分布表查得临界值\(F_{\alpha}(df_A,df_e)\)

  • 如果\(F_A > F_{\alpha}(df_A,df_e)\),则认为因素A对实验结果有显著影响,否则认为因素A对实验结果没有显著影响

6)方差分析表

差异源 \(SS\) \(df\) \(MS\) \(F\) 显著性
组间(因素A) \(SS_A\) \(r-1\) \(MS_A=SS_A/(r-1)\) \(MS_A/MS_e\)
组内(误差) \(SS_e\) \(n-r\) \(MS_e=SS_e/(n-r)\)
总和 \(SS_T\) \(n-1\)
  • 若\(F_A > F_{0.01}(df_A,df_e)\),称因素A对实验结果有非常显著的影响,用**号表示;
  • 若\(F_{0.05}(df_A,df_e)<F_A<F_{0.01}(df_A,df_e)\),则因素A对实验结果有显著的影响,用*号表示;
  • 若\(F_A < F_{0.05}(df_A,df_e)\),称因素A对实验结果的影响不显著

双因素实验的方差分析

  • 讨论两个因素对实验结果影响的显著性,以称二元方差分析

双因素无重复实验的方差分析

双因素无重复实验

\(B_1\) \(B_2\) \(\cdots\) \(B_s\)
\(A_1\) \(x_{11}\) \(x_{12}\) \(\cdots\) \(x_{1s}\)
\(A_2\) \(x_{21}\) \(x_{22}\) \(\cdots\) \(x_{2s}\)
\(\cdots\) \(\cdots\) \(\cdots\) \(\cdots\) \(\cdots\)
\(A_r\) \(x_{r1}\) \(x_{r2}\) \(\cdots\) \(x_{rs}\)

1)计算平均值

总平均:

\[\overline{x} = \frac{1}{rs}\sum_{i=1}^{r}{\sum_{j=1}^{s}x_{ij}}
\tag{9}
\]

\(A_i\)水平时:

\[\overline{x}_{i\cdot} = \frac{1}{s}\sum_{j=1}^{s}x_{ij}
\tag{10}
\]

\(B_j\)水平时:

\[\overline{x}_{{\cdot}j}= \frac{1}{r}\sum_{i=1}^{s}x_{ij}
\tag{11}
\]

2)计算离差平方和

  • 总离差平方和:

\[\overline{x} =\sum_{i=1}^{r}{\sum_{j=1}^{s}{(x_{ij}-\overline{x})^2}}
\tag{12}
\]

  • 因素A引起离差平方和:

\[\overline{x} =\sum_{i=1}^{r}{\sum_{j=1}^{s}{(x_{i{\cdot}}-\overline{x})^2}}=s\sum_{j=1}^{r}{(x_{i{\cdot}}-\overline{x})^2}
\tag{13}
\]

  • 因素B引起的离差平方和:

\[\overline{x} =\sum_{i=1}^{r}{\sum_{j=1}^{s}{(x_{{\cdot}j}-\overline{x})^2}}=r\sum_{j=1}^{s}{(x_{{\cdot}j}-\overline{x})^2}
\tag{14}
\]

  • 误差平方和:

\[\overline{x} =\sum_{i=1}^{r}{\sum_{j=1}^{s}{(x_{ij}-x_{i{\cdot}}-x_{{\cdot}j}-\overline{x})^2}}
\tag{15}
\]

3)计算自由度

\(SS_A\)的自由度 \(SS_B\)的自由度 \(SS_e\)的自由度 \(SS_T\)的自由度
\(df_A=r-1\) \(df_B=s-1\) \(df_e=(r-1)(s-f)\) \(df_T=n-1=rs-1\)

4)计算均方

A均方 B均方 e均方
\(MS_A=\dfrac{SS_A}{df_A}=\dfrac{SS_A}{r-1}\) \(MS_B=\dfrac{SS_B}{df_A}=\dfrac{SS_B}{s-1}\) \(MS_e=\dfrac{SS_e}{df_e}=\dfrac{SS_e}{(r-1)(s-1)}\)

5)F 检验

  • \(F_A\)服从自由度为\((df_A,df_e)\)的F分布:\(F_A=\dfrac{MS_A}{MS_e}\)
  • \(F_B\)服从自由度为\((df_B,df_e)\)的F分布:\(F_A=\dfrac{MS_B}{MS_e}\)
  • 对于给定的的显著性水平\(\alpha\),查F分布表:

\[F_{\alpha}(df_A,df_e) \quad \quad F_{\alpha}(df_B,df_e)
\]

  • 如果\(F_A > F_{\alpha}(df_A,df_e)\),则认为因素A对实验结果有显著影响,否则认为因素A对实验结果没有显著影响
  • 如果\(F_B > F_{\alpha}(df_B,df_e)​\),则认为因素A对实验结果有显著影响,否则认为因素A对实验结果没有显著影响

6)无重复实验双因素方差分析表

差异源 \(SS\) \(df\) \(MS\) \(F\) 显著性
因素A \(SS_A\) \(r-1\) \(MS_A=SS_A/(r-1)\) \(MS_A/MS_e\)
因素B \(SS_B\) \(s-1\) \(MS_B=SS_B/(s-1)\) \(MS_B/MS_e\)
误差 \(SS_e\) \((r-1)(s-1)\) \(MS_e=SS_e/((r-1)(s-1))\)
总和 \(SS_T\) \(rs-1\)

双因素重复实验基本问题

  • 交互作用——因素间的联全作用称为交互作用

  • 因素间没有联合作用——相互独立,独立效应

  • 因素间有联合作用——交互作用,交互效应

双因素重复实验方差分析基本步骤

1)计算平均值

  • 组合水平\((A_i,B_i)\)上的\(c\)次实验值的算术平均值

\[\overline{x}_{ij{\cdot}}=\frac{1}{c}\sum_{k=1}^{c}{x_{ijk}},i=1,2,\cdots,r;j=1,2,\cdots,s
\tag{16}
\]

  • \(A_i\)水平时所有实验值的算术平均值:

\[\overline{x}_{i\cdot\cdot} = \frac{1}{sc}\sum_{j=1}^{s}x_{ijk} = \frac{1}{s}\sum_{j=1}^{s}x_{ijk},i=1,2,\cdots,r
\tag{17}
\]

  • \(B_j\)水平时:

\[\overline{x}_{i\cdot\cdot} = \frac{1}{rc}\sum_{j=1}^{s}x_{ijk} = \frac{1}{r}\sum_{j=1}^{r}x_{ij\cdot},j=1,2,\cdots,s
\tag{18}
\]

  • 所有实验的总平均值:

\[\overline{x} = \frac{1}{rsc} \sum_{i=1}^{r}\sum_{j=1}^{s}\sum_{k=1}^{c}x_{ijk}
\tag{19}
\]

2)计算离差平方和

  • 总离差平方和:

\[SS_T=\frac{1}{rsc}\sum_{i=1}^{r}\sum_{j=1}^{s}\sum_{k=1}^{c}{(x_{ijk}-\overline{x})^2} = SS_A+SS_B+SS_{A\times{B}}+SS_e
\tag{20}
\]

  • \(SS_A\)为A引起的离差平方和:

\[SS_A = sc\sum_{i=1}^{r}{(\overline{x}_{i\cdot\cdot}-\overline{x})^2}
\]

  • \(SS_B\)为B引起的离差平方和:

\[SS_B = rc\sum_{j=1}^{s}{(\overline{x}_{\cdot{j}\cdot}-\overline{x})^2}
\]

  • \(SS_{A\times{B}}\)为\(A\times{B}\)引起的离差平方和:

\[SS_{A\times{B}} = c\sum_{i=1}^{r}\sum_{j=1}{s}{(\overline{x}_{ij\cdot}-\overline{x}_{i\cdot\cdot}-\overline{x}_{\cdot{j}\cdot}+\overline{x})^2}
\]

  • \(SS_e\)为误差平方和:

\[\overline{x} = \sum_{i=1}^{r}\sum_{j=1}^{s}\sum_{k=1}^{c}{(x_{ijk}-\overline{x}_{ij\cdot})^2}
\]

3)计算自由度

\(SS_A\)的自由度 \(SS_B\)的自由度 \(SS_{A\times{B}}\)的自由度 \(SS_e\)的自由度 \(SS_T\)的自由度
\(df_A=r-1\) \(df_B=s-1\) \(df_{A\times{B}}=(r-1)(n-1)\) \(df_e=rs(c-1)\) \(df_T=n-1=rsc-1\)

4)计算均方

A均方 B均方 \(A\times{B}\)均方 e均方
\(MS_A=\dfrac{SS_A}{df_A}=\dfrac{SS_A}{r-1}\) \(MS_B=\dfrac{SS_B}{df_A}=\dfrac{SS_B}{s-1}\) \(MS_{A\times{B}}=\dfrac{SS_{A\times{B}}}{(r-1)(s-1)}\) \(MS_e=\dfrac{SS_e}{df_e}=\dfrac{SS_e}{rs(c-1)}\)

5)F 检验

  • \(F_A\)服从自由度为\((df_A,df_e)\)的F分布:\(F_A=\dfrac{MS_A}{MS_e}\)
  • \(F_B\)服从自由度为\((df_B,df_e)\)的F分布:\(F_A=\dfrac{MS_B}{MS_e}\)
  • \(F_{A\times{B}}\)服从自由度为\((df_{A\times{B}},df_e)\)的F分布:\(F_A=\dfrac{MS_{A\times{B}}}{MS_e}\)
  • 对于给定的的显著性水平\(\alpha\),查F分布表:

\[F_{\alpha}(df_A,df_e) \quad \quad F_{\alpha}(df_B,df_e) \quad \quad F_{\alpha}(df_{A\times{B}},df_e)
\]

  • 如果\(F_A > F_{\alpha}(df_A,df_e)\),则认为因素A对实验结果有显著影响,否则认为因素A对实验结果没有显著影响
  • 如果\(F_B > F_{\alpha}(df_B,df_e)\),则认为因素B对实验结果有显著影响,否则认为因素B对实验结果没有显著影响
  • 如果\(F_{A\times{B}}> F_{\alpha}(df_{A\times{B}},df_e)\),则认为交互作用$$A\times{B}$$对实验结果有显著影响,否则认为因素\(A\times{B}\)对实验结果没有显著影响

6)重复实验双因素方差分析表

差异源 \(SS\) \(df\) \(MS\) \(F\) 显著性
因素A \(SS_A\) \(r-1\) \(MS_A=SS_A/(r-1)\) \(MS_A/MS_e\)
因素B \(SS_B\) \(s-1\) \(MS_B=SS_B/(s-1)\) \(MS_B/MS_e\)
交互作用 \(SS_{A\times{B}}\) \((r-1)(s-1)\) \(MS_{A\times{B}}=\dfrac{SS_{A\times{B}}}{(r-1)(s-1)}\) \(MS_{A\times{B}}/MS_e\)
误差 \(SS_e\) \(rs(c-1)\) \(MS_c=SS_e/(rs(c-1))\)
总和 \(SS_T\) \(rsc-1\)

R语言方差分析

R语言重复实验方差分析

例:下表中给出了某种化式产品在3种浓度、4种温度水平下得率的数据,试检验各因素及交互作用对产品得率的影响是否显著。

浓度/% 10℃ 24℃ 38℃ 52℃
2 14,11 11,11 13,9 10,12
4 9,7 10,8 7,11 6,10
6 5,11 13,14 12,13 14,10

我们令:A因素:浓度,B因素:温度,由题可得,重复次数\(c=2\)

可以分析出如下表:

\((c_1,c_2)\) \(B_1\) \(B_2\) \(B_3\) \(B_4\)
浓度/% 10℃ 24℃ 38℃ 52℃
\(A_1\) 2 14,11 11,11 13,9 10,12
\(A_2\) 4 9,7 10,8 7,11 6,10
\(A_3\) 6 5,11 13,14 12,13 14,10

接下来,我们在RStudio(如果RStudio没有安装的,网上有大量的教程)中录入我们的数据,代码如下

X <- c(14,9,5,11,10,13,13,7,12,10,6,14,10,7,11,11,8,14,9,11,13,12,10,10)
chemistryProduct<-data.frame(X,A=gl(3,1,24),B=gl(4,3,24),c=gl(12,1,24))
chemistryProduct.aov<-aov(X~A*B,data = chemistryProduct)
summary(chemistryProduct.aov)

说明:对上述代码的第1行和第2行简单说明一下。

第1行中,X数据的输入,是以列的方向输入,先输入第1次实验的数据,输入完成后再按第1次的顺序输入第2次实验数据。

第2行中,A=gl(3,1,24),第一个数3表示有3行,第二个数1表示行方向只增加1,第三个数24表示总共有24个数据。后面的同理。可以查看一下它的输出如下,不难发现其中的输入规律。

可以在RStudio中查看chemistryProduct的数据结构,多试一下,自行体会一下其中的A,B,c的规律。

> chemistryProduct
X A B c
1 14 1 1 1
2 9 2 1 2
3 5 3 1 3
4 11 1 2 4
5 10 2 2 5
6 13 3 2 6
7 13 1 3 7
8 7 2 3 8
9 12 3 3 9
10 10 1 4 10
11 6 2 4 11
12 14 3 4 12
13 10 1 1 1
14 7 2 1 2
15 11 3 1 3
16 11 1 2 4
17 8 2 2 5
18 14 3 2 6
19 9 1 3 7
20 11 2 3 8
21 13 3 3 9
22 12 1 4 10
23 10 2 4 11
24 10 3 4 12

可以看到如下输出结果:

            Df Sum Sq Mean Sq F value Pr(>F)
A 2 44.33 22.167 4.092 0.0442 *
B 3 11.50 3.833 0.708 0.5657
A:B 6 27.00 4.500 0.831 0.5684
Residuals 12 65.00 5.417
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

将实验结果写成上文所述的方差分析表,如下

差异源 \(df\) \(SS\) \(MS\) \(F\) 显著性
因素A 2 44.33 22.167 4.092 *
因素B 3 11.50 3.833 0.708
交互作用 6 27.00 4.500 0.831
误差 12 65.00 5.417
总和

由分析结果可知,因素A对产品得率有显著性影响。

实验的方差分析(R语言)的更多相关文章

  1. R语言- 实验报告 - 利用R语言脚本与Java相互调用

    一. 实训内容 利用R语言对Java项目程序进行调用,本实验包括利用R语言对java的.java文件进行编译和执行输出. 在Java中调用R语言程序.本实验通过eclipse编写Java程序的方式,调 ...

  2. R语言实战(五)方差分析与功效分析

    本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ================================================================ ...

  3. R语言——实验5-聚类分析

    针对课件中的例子自己实现k-means算法 调用R语言自带kmeans()对给定数据集表示的文档进行聚类. 给定数据集: a)         数据代表的是文本信息. b)        第一行代表词 ...

  4. R语言——实验4-人工神经网络

    带包实现: rm(list=ls()) setwd("C:/Users/Administrator/Desktop/R语言与数据挖掘作业/实验4-人工神经网络") Data=rea ...

  5. 独立成分分析(ICA)的模拟实验(R语言)

    本笔记是ESL14.7节图14.42的模拟过程.第一部分将以ProDenICA法为例试图介绍ICA的整个计算过程:第二部分将比较ProDenICA.FastICA以及KernelICA这种方法,试图重 ...

  6. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  7. R语言书籍的学习路线图

    现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑 ...

  8. 机器学习 1、R语言

    R语言 R是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. 特点介绍 •主要用于统计分析.绘图.数据挖掘 •R内置 ...

  9. 数据分析与R语言

    数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), m ...

随机推荐

  1. Flink1.4.0连接Kafka0.10.2时遇到的问题

    Flink1.4.0连接部署在Linux上的Kafka0.10.2时,报如下异常: org.apache.flink.streaming.connectors.kafka.FlinkKafkaCons ...

  2. 网络通信框架Retrofit2

    网络通信框架Retrofit2 1 概要 Retrofit2的简介以及特点 Retrofit2使用配置(导包,权限等) Retrofit2中常用的注解介绍 Retrofit2实现http网络访问 GE ...

  3. FragmentStatePagerAdapter和FragmentPagerAdapter区别

    FragmentPageAdapter和FragmentStatePagerAdapter 我们简要的来分析下这两个Adapter的区别: FragmentPageAdapter:和PagerAdap ...

  4. Web服务架构风格之REST

    REST(Representational State Transfer)是一种Web服务的架构,其目的是创建具有良好扩展性的分布式系统.它的约束包含: 使用C/S模型.client和server之间 ...

  5. 03-04_配置并启动Managed Server(受管服务器)

    本文重点: 配置Managed Servers(受管服务器) 启动Managed Servers 原理 运行多个Managed Servers实例             一.配置Managed Se ...

  6. MD5密码加密

    using System; using System.Security.Cryptography; using System.Text; namespace DimoNetwork.Common.DE ...

  7. NewEmployeesLearnNotes——新人程序员学习计划V1.1

    百度云链接:https://pan.baidu.com/s/1BzoT79tV1QGwIQTjkGA4CQ 密码:k78i 修改中...

  8. 【待补充】[Spark Core] Spark 实现标签生成

    0. 说明 在 IDEA 中编写 Spark 代码实现将 JSON 数据转换成标签,分别用 Scala & Java 两种代码实现. 1. 准备 1.1 pom.xml  <depend ...

  9. MySQL案列之主从复制出错问题以及pt-slave-restart工具的使用

    今天主从复制遇到一个问题,主库上插入了几百行万数据,后来又删除了这些数据,原因就是主库删除的表从库中不存在,导致从库在遇到删除不存在表的错误无法继续同步. MySQL [(none)]> sho ...

  10. Linux之添加交换分区

    Linux下的交换分区我们可以随意改变大小,如果说日常生活中分区不够用,今天我们来举个例子如何添加. 1.首先是使用dd命令创建一个空文件,这个空文件的大小就是你要继续添加的swap的大小,比如我这里 ...