【题解】FBI序列
题目描述
两伙外星人策划在未来的XXXX年侵略地球,侵略前自然要交换信息咯,现在,作为全球保卫队队长,你截获了外星人用来交换信息的一段仅由“F”,“B”,“I”,“O”组成的序列。为了保卫地球和平,为了使家园不受破坏,你要机智地破解密码,勇敢地迎击外星人!记住,你不是一个人在战斗!你不是一个人!你的背后是千千万万的地球人!
输入输出格式
输入格式
一组仅由“F”、“B”、“I”、“0”组成的序列(“F”、“B”、“I”、“0”这四个字母中的某一个或某几个不一定会出现,且保证序列长度≤2000)
规定这个序列所要传达的信息就是这组序列有多少个“FBI”(子序列)
输出格式
一行,一个数,表示这组序列有多少个“FBI”的子序列(保证答案≤2^31,且FBI必须是正序,即IBF或者BIF或者FIB或者BFI或者IFB都不能算是一个FBI)
输入输出样例
输入样例
FBIIBFOI
输出样例
4
题解
朴素做法很明显,枚举F,B,I的位置,暴力统计,时间复杂度O(n³),数据水的话还能卡过去。
显然我们不能用这种做法。可以考虑枚举B的位置i(假设从1开始计数),然后统计字符串的第一位到第i-1位里F的数量和第i+1位到第n位I的数量,根据乘法原理统计结果,而事实上统计F,I的数量也可以用两个变量维护,枚举i的过程中判断要不要更改这两个变量,这样即可做到O(n)的时间复杂度。
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; char s[];
int len;
int cnt_F, cnt_I;
int ans; int main()
{
scanf("%s", s);
len = strlen(s);
for(register int i = ; i < len; ++i)
{
if(s[i] == 'I') ++cnt_I;
}
for(register int i = ; i < len; ++i)
{
if(s[i] == 'B') ans += cnt_F * cnt_I;
else if(s[i] == 'F') ++cnt_F;
else if(s[i] == 'I') --cnt_I;
}
printf("%d", ans);
}
参考程序
【题解】FBI序列的更多相关文章
- 题解-[HNOI2016]序列
题解-[HNOI2016]序列 [HNOI2016]序列 给定 \(n\) 和 \(m\) 以及序列 \(a\{n\}\).有 \(m\) 次询问,每次给定区间 \([l,r]\in[1,n]\),求 ...
- [题解] [SDOI2017] 序列计数
题面 题解 和 SDOI2015 序列统计 比较像 这个无非就是把乘改成了加, NTT 改成了 MTT 再加上了一个小小的容斥 : 拿所有方案减去不合法方案即可 Code #include <a ...
- [题解] [SDOI2015] 序列统计
题面 题解 设 \(f[i][j]\) 代表长度为 \(i\) 的序列, 乘积模 \(m\) 为 \(j\) 的序列有多少个 转移方程如下 \[ f[i + j][C] = \sum_{A*B\equ ...
- 题解-bzoj1283序列 & bzoj4842 [Neerc2016]Delight for a Cat
因为这两题有递进关系,所以放一起写 Problem bzoj1283 序列 题意概要:一个长度为 \(n\) 的序列\(\{c_i\}\),求一个子集,使得原序列中任意长度为 \(m\) 的子串中被选 ...
- bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Stat ...
- 题解 [HNOI2019]序列
题目传送门 题目大意 给出一个\(n\)个数的数列\(A_{1,2,...,n}\),求出一个单调不减的数列\(B_{1,2,...,n}\),使得\(\sum_{i=1}^{n}(A_i-B_i)^ ...
- [题解]BZOJ1004 序列函数
原题找不到了,应该是usaco之类的题目吧.给一个可以交题的链接:http://www.cqoi.net:2012/problem.php?id=1004 思路:将素数一个一个往里乘,保证扫描的顺序是 ...
- BZOJ4416 [Shoi2013]阶乘字符串 【序列自动机 + 状压dp】
题目链接 BZOJ4416 题解 建立序列自动机,即预处理数组\(nxt[i][j]\)表示\(i\)位置之后下一个\(j\)出现的位置 设\(f[i]\)表示合法字符集合为\(i\)的最短前缀,枚举 ...
- 【bzoj1430】小猴打架 Prufer序列
题目描述 给出 $n$ 个点,每次选择任意一条边,问这样 $n-1$ 次后得到一棵树的方案数是多少. 输入 一个整数N. 输出 一行,方案数mod 9999991. 样例输入 4 样例输出 96 题解 ...
随机推荐
- Ajax的用法
1 Ajax是什么 1.1 Asynchronous JavaScript and XML(异步的javascript和xml) 实质为:使用浏览器内置的一个对象(XmlHttpRequest)向服务 ...
- 第4章 初识STM32
第4章 初识STM32 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/firege ...
- Java基础系列篇:JAVA多线程 并发编程
一:为什么要用多线程: 我相信所有的东西都是以实际使用价值而去学习的,没有实际价值的学习,学了没用,没用就不会学的好. 多线程也是一样,以前学习java并没有觉得多线程有多了不起,不用多线程我一样可以 ...
- Exp02
使用netcat后门工具 原理示意图 使用netcat获取主机操作Shell,cron启动 Win获取Linux Shell Linux获取Win Shell cron启动 用man -k指令查看有关 ...
- spring 配置 线程池并使用 springtest 进行测试
在 applicationContext.xml 中配置spring线程池: <!-- 包路径扫描 --> <context:component-scan base-package= ...
- CS190.1x-ML_lab3_linear_reg_student
这次作业主要是有关监督学习,数据集是来自UCI Machine Learning Repository的Million Song Dataset.我们的目的是训练一个线性回归的模型来预测一首歌的发行年 ...
- flask-login 整合 pyjwt + json 简易flask框架
现在很多框架都实现前后端分离,主要为了适应以下几个目的: 1,前后端的分离,可以使前端开发和后端开发更加分工明确,而不是后端还需要在视图模板中加入很多{% XXXX %}标签 2,是为了适应跨域调用或 ...
- iOSApp上下有黑边
如图: 这种情况就是没有启动页导致的,加了启动页图片之后就不会再出现了. 设置启动页的方法: http://www.cnblogs.com/BK-12345/p/5218229.html 有的人说我加 ...
- C#_父窗体跟子窗体的控件操作
很多人都苦恼于如何在子窗体中操作主窗体上的控件,或者在主窗体中操作子窗体上的控件.相比较而言,后面稍微简单一些,只要在主窗体中创建子窗体的时候,保留所创建子窗体对象即可. 下面重点介绍前一种,目前常见 ...
- Java+Netty、Vue+Element-UI实现的即时通信应用 leo-im
之前工作接触了几个开源的IM产品,再加上曾经用Netty实现过几个服务,于是就有了用Netty实现一个IM的想法,于是用业余时间写了一个IM,和喜欢Netty的程序员们分享. 考虑到方便扩展,在服务端 ...