本文转载自Differences between Stack and Heap

Stack vs Heap

So far we have seen how to declare basic type variables such as int, double, etc, and complex types such as arrays and structs. The way we have been declaring them so far, with a syntax that is like other languages such as MATLAB, Python, etc, puts these variables on the stack in C.

The Stack

What is the stack? It's a special region of your computer's memory that stores temporary variables created by each function (including the main() function). The stack is a "LIFO" (last in, first out) data structure, that is managed and optimized by the CPU quite closely. Every time a function declares a new variable, it is "pushed" onto the stack. Then every time a function exits, all of the variables pushed onto the stack by that function, are freed (that is to say, they are deleted). Once a stack variable is freed, that region of memory becomes available for other stack variables.

The advantage of using the stack to store variables, is that memory is managed for you. You don't have to allocate memory by hand, or free it once you don't need it any more. What's more, because the CPU organizes stack memory so efficiently, reading from and writing to stack variables is very fast.

A key to understanding the stack is the notion that when a function exits, all of its variables are popped off of the stack (and hence lost forever). Thus stack variables are local in nature. This is related to a concept we saw earlier known as variable scope, or local vs global variables. A common bug in C programming is attempting to access a variable that was created on the stack inside some function, from a place in your program outside of that function (i.e. after that function has exited).

Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of variables that can be stored on the stack. This is not the case for variables allocated on the heap.

To summarize the stack:

  • the stack grows and shrinks as functions push and pop local variables
  • there is no need to manage the memory yourself, variables are allocated and freed automatically
  • the stack has size limits
  • stack variables only exist while the function that created them, is running

The Heap

The heap is a region of your computer's memory that is not managed automatically for you, and is not as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To allocate memory on the heap, you must use malloc() or calloc(), which are built-in C functions. Once you have allocated memory on the heap, you are responsible for using free() to deallocate that memory once you don't need it any more. If you fail to do this, your program will have what is known as a memory leak. That is, memory on the heap will still be set aside (and won't be available to other processes). As we will see in the debugging section, there is a tool called valgrind that can help you detect memory leaks.

Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious physical limitations of your computer). Heap memory is slightly slower to be read from and written to, because one has to use pointers to access memory on the heap. We will talk about pointers shortly.

Unlike the stack, variables created on the heap are accessible by any function, anywhere in your program. Heap variables are essentially global in scope.

Stack vs Heap Pros and Cons

Stack

  • very fast access
  • don't have to explicitly de-allocate variables
  • space is managed efficiently by CPU, memory will not become fragmented
  • local variables only
  • limit on stack size (OS-dependent)
  • variables cannot be resized

Heap

  • variables can be accessed globally
  • no limit on memory size
  • (relatively) slower access
  • no guaranteed efficient use of space, memory may become fragmented over time as blocks of memory are allocated, then freed
  • you must manage memory (you're in charge of allocating and freeing variables)
  • variables can be resized using realloc()

Examples

Here is a short program that creates its variables on the stack. It looks like the other programs we have seen so far.

#include <stdio.h>

double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4}; printf("double your salary is %.3f\n", multiplyByTwo(salary)); return 0;
}
double your salary is 24691.340

On lines 10, 11 and 12 we declare variables: an int, a double, and an array of three doubles. These three variables are pushed onto the stack as soon as the main() function allocates them. When the main() function exits (and the program stops) these variables are popped off of the stack. Similarly, in the function multiplyByTwo(), the twice variable, which is a double, is pushed onto the stack as soon as the multiplyByTwo() function allocates it. As soon as the multiplyByTwo() function exits, the twice variable is popped off of the stack, and is gone forever.

As a side note, there is a way to tell C to keep a stack variable around, even after its creator function exits, and that is to use the static keyword when declaring the variable. A variable declared with the static keyword thus becomes something like a global variable, but one that is only visible inside the function that created it. It's a strange construction, one that you probably won't need except under very specific circumstances.

Here is another version of this program that allocates all of its variables on the heap instead of the stack:

#include <stdio.h>
#include <stdlib.h> double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int *age = malloc(sizeof(int));
*age = 30;
double *salary = malloc(sizeof(double));
*salary = 12345.67;
double *myList = malloc(3 * sizeof(double));
myList[0] = 1.2;
myList[1] = 2.3;
myList[2] = 3.4; double *twiceSalary = multiplyByTwo(salary); printf("double your salary is %.3f\n", *twiceSalary); free(age);
free(salary);
free(myList);
free(twiceSalary); return 0;
}

As you can see, using malloc() to allocate memory on the heap and then using free() to deallocate it, is no big deal, but is a bit cumbersome. The other thing to notice is that there are a bunch of star symbols * all over the place now. What are those? The answer is, they are pointers. The malloc() (and calloc() and free()) functions deal with pointers not actual values. We will talk more about pointers shortly. The bottom line though: pointers are a special data type in C that store addresses in memory instead of storing actual values. Thus on line 5 above, the twice variable is not a double, but is a pointer to a double. It's an address in memory where the double is stored.

When to use the Heap?

When should you use the heap, and when should you use the stack? If you need to allocate a large block of memory (e.g. a large array, or a big struct), and you need to keep that variable around a long time (like a global), then you should allocate it on the heap. If you are dealing with relatively small variables that only need to persist as long as the function using them is alive, then you should use the stack, it's easier and faster. If you need variables like arrays and structs that can change size dynamically (e.g. arrays that can grow or shrink as needed) then you will likely need to allocate them on the heap, and use dynamic memory allocation functions like malloc(), calloc(), realloc() and free() to manage that memory "by hand". We will talk about dynamically allocated data structures after we talk about pointers.

Reference

What and where are the stack and heap?

Differences between Stack and Heap的更多相关文章

  1. 堆栈 & Stack and Heap

    What's the difference between a stack and a heap? The differences between the stack and the heap can ...

  2. 【转】JVM运行原理及JVM中的Stack和Heap的实现过程

    来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...

  3. 图解.NET Stack和Heap的本质区别

    现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...

  4. JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集

    (转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...

  5. JVM运行原理及Stack和Heap的实现过程

    Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...

  6. Java虚拟机:JVM中的Stack和Heap

    简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...

  7. 深入Java虚拟机:JVM中的Stack和Heap

    在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...

  8. Mastering stack and heap for system reliability

    http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_he ...

  9. Stack vs Heap

    http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html Table of Contents Stack vs Heap The Stac ...

随机推荐

  1. hibernate+spring+tomcat启动报错Not supported by BasicDataSource

    最近使用hibernate+spring+jsp的小项目制作过程中出现一些错误,例如: java.lang.UnsupportedOperationException: Not supported b ...

  2. 关于webservice实现web接口

    package service; import java.util.List; import javax.jws.WebMethod;import javax.jws.WebService; /** ...

  3. 调用个别f5 负载端口为80的vs时,返回值为空的问题

    现状: vs负载端口为80并添加XFF,pool包含2个member,member的monitor端口为80&9000. 故障现象: 应用同事描述说再完全复制了一个member并添加到pool ...

  4. 杂论-FTP

    FTP 一 简单介绍 FTP 是File Transfer Protocol(文件传输协议)的英文简称,而中文简称为"文传协议".用于Internet上的控制文件的双向传输.同时, ...

  5. dedecms不能保存jpeg格式图片的解决方法

    方法如下: 进入织梦的后台管理目录,默认是dede文件夹,找到/inc/inc_archives_functions.php文件. 在文件里查找gif|jpg|,我找到了4个, 在它们后面加jpeg的 ...

  6. C - Oulipo

    The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e ...

  7. xml——dom&sax解析、DTD&schema约束

    dom解析实例: 优点:增删改查一些元素等东西方便 缺点:内存消耗太大,如果文档太大,可能会导致内存溢出 sax解析: 优点:内存压力小 缺点:增删改比较复杂 当我们运行的java程序需要的内存比较大 ...

  8. Network POJ - 3694 无向图找桥

    题意: 给你一个无向图,你需要找出来其中有几个桥 桥: 1.存在重边必定不为桥 2.low[v]>dfn[u] 代码: //题意很清晰 //就是这个需要先找出来原无向图中的桥个数,然后在判断添加 ...

  9. 国产网络损伤仪 SandStorm -- 只需要拖拽就能删除链路规则

    国产网络损伤仪SandStorm可以模拟出带宽限制.时延.时延抖动.丢包.乱序.重复报文.误码.拥塞等网络状况,在实验室条件下准确可靠地测试出网络应用在真实网络环境中的性能,以帮助应用程序在上线部署前 ...

  10. ssh原理及加密传输

    1.ssh??(保证过程中是加密的,即安全的)ssh 是 Secure Shell 的缩写,是一个建立在应用层上的安全远程管理协议.ssh 是目前较为可靠的传输协议,专为远程登录会话和其他网络服务提供 ...