A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
1 Introduction
GANs由两个模型组成:生成器和鉴别器。生成器试图捕获真实示例的分布,以便生成新的数据样本。鉴别器通常是一个二值分类器,尽可能准确地将生成样本与真实样本区分开来。GANs的优化问题是一个极大极小优化问题。优化终止于相对于生成器的最小值和相对于鉴别器的最大值的鞍点。
2.1 Generative algorithms
生成算法可分为两类:显式密度模型和隐式密度模型。
2.1,1 Explicit density model
显式密度模型假设分布,利用真实数据训练包含分布或拟合分布参数的模型。完成后,使用所学习的模型或分布生成新的示例。
2.1.2 Implicit density model
隐式密度模型不能直接估计或拟合数据分布。它在没有明确假设[101]的情况下从分布中生成数据实例,并利用生成的实例修改模型。GANs属于有向隐式密度模型范畴。
3 Algorithm
3.1 Generative Adversarial Nets (GANs)
3.1.1.1 Original minimax game:
3.2 GANs' representative variants
3.2.1 InfoGAN
https://zhuanlan.zhihu.com/p/55945164
从损失函数的角度来看,infoGAN的损失函数变为:
3.2.2 Conditional GANs (cGANs)
https://blog.csdn.net/taoyafan/article/details/81229466
Conditional GAN的目标函数:
Conditional GAN 结构图:
判别网络两种形式:
ACGAN (Auxiliary Classifier GANs):
https://zhuanlan.zhihu.com/p/91592775
3.2.3 CycleGAN
https://www.jianshu.com/p/5bf937a0d993
3.3.3.6 BigGANs and StyleGAN:
StyleGAN:
https://zhuanlan.zhihu.com/p/62119852
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications的更多相关文章
- (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!
Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...
- 论文解读(GAN)《Generative Adversarial Networks》
Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- SalGAN: Visual saliency prediction with generative adversarial networks
SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...
- Generative Adversarial Networks,gan论文的畅想
前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
随机推荐
- Bootstrap++:bootstrap-select 使用
效果图: HTML: <!DOCTYPE html> <html lang="en" xmlns:th="http://www.thymeleaf.or ...
- 无线网络安全攻防实战进阶(杨哲) PDF|网盘下载内附提取码|
面对当前国内企事业单位及soho无线网络的飞速发展.智能手机等便携式设备的广泛使用.无线网络犯罪案例日益递增的发展现状,<无线网络安全攻防实战进阶>作为<无线网络安全攻防实战> ...
- 设在起始地址为STRING的存储空间存放了一个字符串(该串已存放在内存中,无需输入,且串长不超过99),统计字符串中字符“A”的个数,并将结果显示在屏幕上。
问题 设在起始地址为STRING的存储空间存放了一个字符串(该串已存放在内存中,无需输入,且串长不超过99),统计字符串中字符"A"的个数,并将结果显示在屏幕上. 代码 data ...
- Python File seek() 方法
概述 seek() 方法用于移动文件读取指针到指定位置.高佣联盟 www.cgewang.com 语法 seek() 方法语法如下: fileObject.seek(offset[, whence]) ...
- PHP mysqli_rollback() 函数
关闭自动提交,做一些查询,提交查询,然后回滚当前事务: <?php 高佣联盟 www.cgewang.com // 假定数据库用户名:root,密码:123456,数据库:RUNOOB $con ...
- 星屑幻想 optimal mark
LINK :SP839 星屑幻想 取自 OJ 的名称 小事情...题目大意还是要说的这道题比较有意思,想了一段时间. 给你一张图 这张图给答案带来的贡献是每条边上两个点值得异或 一些点的值已经被确定 ...
- Lambda表达式运行原理
目录 一.创建测试样例 二.利用Java命令编译分析 三.文末 JDK8引入了Lambda表达式以后,对我们写代码提供了很大的便利,那么Lambda表达式是如何运用简单表示来达到运行效果的呢?今天,我 ...
- day12. 闭包
一.概念 """ 如果内函数使用了外函数的局部变量, 并且外函数把内函数返回出来的过程,叫做闭包 里面的内函数是闭包函数 """ 二.基本语 ...
- spring 命名空间
命名空间太多了,有必要学习了解一下 xmlns是XML Namespaces的缩写 使用语法: xmlns:namespace-prefix="namespaceURI" xsi全 ...
- 用Python绘制一套“会跳舞”的动态图形给你看看
在读技术博客的过程中,我们会发现那些能够把知识.成果讲透的博主很多都会做动态图表.他们的图是怎么做的?难度大吗?这篇文章就介绍了 Python 中一种简单的动态图表制作方法. 看这优美的舞姿 很多人学 ...