题目描述

某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为 1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

输入格式

第一行是两个数字 n(表示路灯的总数)和 c(老张所处位置的路灯号);

接下来 n 行,每行两个数据,表示第 1 盏到第 n 盏路灯的位置和功率。数据保证路灯位置单调递增。

输出格式

一个数据,即最少的功耗(单位:J,1J=1W×s)。

输入输出样例

输入 #1

5 3

2 10

3 20

5 20

6 30

8 10

输出 #1

270

说明/提示

样例解释

此时关灯顺序为 3 4 2 1 5。

数据范围

1≤n≤50,1≤c≤n。

分析

这是一道区间DP题

我们可以把老张走的路程看做一段区间,区间的两个端点分别为\(i\),\(j\)

因为老张最后停留到\(i\)点和最后停留到\(j\)点贡献的价值不一样

所以我们定义\(f[i][j][0]\)为关闭区间\([i,j]\)的路灯后回到\(i\)的最小花费

\(f[i][j][1]\)为关闭区间\([i,j]\)的路灯后回到\(j\)的最小花费

同时我们定义\(wz[i]\)为第\(i\)盏路灯的位置,\(gl[i]\)为第\(i\)盏灯的功率,\(sum[i]\)为前\(i\)盏路灯的功率之和

对于\(f[i][j][0]\),它可以由\(f[i+1][j][0]\)或者\(f[i+1][j][1]\)转移而来

\(f[i][j][0]=f[i+1][j][0]+(wz[i+1]-wz[i])*(sum[i]+sum[n]-sum[j])\)



\(f[i][j][0]=f[i+1][j][1]+(wz[j]-wz[i])*(sum[i]+sum[n]-sum[j]))\)



因此,\(f[i][j][0]=min(f[i+1][j][0]+(wz[i+1]-wz[i])*(sum[i]+sum[n]-sum[j]),f[i+1][j][1]+(wz[j]-wz[i])*(sum[i]+sum[n]-sum[j]));\)

同理,\(f[i][j][1]=min(f[i][j-1][1]+(wz[j]-wz[j-1])*(sum[i-1]+sum[n]-sum[j-1]),f[i][j-1][0]+(wz[j]-wz[i])*(sum[i-1]+sum[n]-sum[j-1]));\)

问题就迎刃而解

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=55;
int f[maxn][maxn][2];
int wz[maxn],gl[maxn],sum[maxn];
int main(){
memset(f,0x3f,sizeof(f));
int n,c;
scanf("%d%d",&n,&c);
f[c][c][1]=f[c][c][0]=0;
for(int i=1;i<=n;i++){
scanf("%d%d",&wz[i],&gl[i]);
sum[i]=sum[i-1]+gl[i];
}
for(int d=2;d<=n;d++){
for(int i=1;i<=n-d+1;i++){
int j=i+d-1;
f[i][j][0]=min(f[i+1][j][0]+(wz[i+1]-wz[i])*(sum[i]+sum[n]-sum[j]),f[i+1][j][1]+(wz[j]-wz[i])*(sum[i]+sum[n]-sum[j]));
f[i][j][1]=min(f[i][j-1][1]+(wz[j]-wz[j-1])*(sum[i-1]+sum[n]-sum[j-1]),f[i][j-1][0]+(wz[j]-wz[i])*(sum[i-1]+sum[n]-sum[j-1]));
}
}
printf("%d\n",min(f[1][n][0],f[1][n][1]));
return 0;
}

洛谷 P1220 关路灯 区间DP的更多相关文章

  1. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  2. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  3. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  4. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  5. 洛谷P1220 关路灯

    洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...

  6. P1220 关路灯——区间dp

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...

  7. 洛谷——P1220 关路灯

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...

  8. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  9. 洛谷P1220 关路灯【区间dp】

    题目:https://www.luogu.org/problemnew/show/P1220 题意:给定n盏灯的位置和功率,初始时站在第c盏处. 关灯不需要时间,走的速度是1单位/秒.问把所有的灯关掉 ...

随机推荐

  1. WSO2 - MI

    简介 WSO2MI(Micro Integrator)是一个事件驱动的企业服务总线(Enterprise Service Bus),支持消息路由.数据格式转换.通信协议转换,支持连接SAP.KAFKA ...

  2. iOS-自定义 UITabBarController

    先来回顾一下UITabBarController ( 稍微详细的在在http://blog.csdn.net/yang198907/article/details/49807011) 伴随UITabB ...

  3. is ==小数据池编码解码

    ==      比较      比较的是两边的值    is      比较      比较的是内存地址   判断两个东西指向的是不是同一个对象         取内存地址 id() 小数据池     ...

  4. IAT表

    0X0 0 DLL介绍 DLL翻译器为动态链接库,原来不存在DLL的概念只有,库的概念,编译器会把从库中获取的二进制代码插入到应用程序中.在现在windows操作系统使用了数量庞大的库函数(进程,内存 ...

  5. 使用redis实现nodejs并发服务

    const redisClient = require('redis').createClient(6379, '127.0.0.1'); const crypto = require('crypto ...

  6. 多应用下 Swagger 的使用,这可能是最好的方式!

    问题 微服务化的时代,我们整个项目工程下面都会有很多的子系统,对于每个应用都有暴露 Api 接口文档需要,这个时候我们就会想到 Swagger 这个优秀 jar 包.但是我们会遇到这样的问题,假如说我 ...

  7. Flume-1.4.0和Hbase-0.96.0整合

    在使用Flume的时候,请确保你电脑里面已经搭建好Hadoop.Hbase.Zookeeper以及Flume.本文将以最新版的Hadoop-2.2.0.Hbase-0.96.0.Zookeeper-3 ...

  8. Android学习笔记Intent二

    上篇随笔大概写了了Intent学习的大纲,这篇通过代码理解下Intent的ComponentName属性的使用 ComponentName,中文意思是组件名称,通过Intent的setsetCompo ...

  9. 小师妹学JVM之:深入理解JIT和编译优化-你看不懂系列

    目录 简介 JIT编译器 Tiered Compilation分层编译 OSR(On-Stack Replacement) Deoptimization 常见的编译优化举例 Inlining内联 Br ...

  10. MFC vc++严重性 代码 说明 项目 文件 行 禁止显示状态 错误 C3646 “m_SockClient”: 未知重写说明符

    严重性 代码 说明 项目 文件 行 禁止显示状态错误 C3646 “m_SockClient”: 未知重写说明符 MFC_TCP_CSocket_Client c:\users\tt2018\docu ...