题目描述

某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为 1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

输入格式

第一行是两个数字 n(表示路灯的总数)和 c(老张所处位置的路灯号);

接下来 n 行,每行两个数据,表示第 1 盏到第 n 盏路灯的位置和功率。数据保证路灯位置单调递增。

输出格式

一个数据,即最少的功耗(单位:J,1J=1W×s)。

输入输出样例

输入 #1

5 3

2 10

3 20

5 20

6 30

8 10

输出 #1

270

说明/提示

样例解释

此时关灯顺序为 3 4 2 1 5。

数据范围

1≤n≤50,1≤c≤n。

分析

这是一道区间DP题

我们可以把老张走的路程看做一段区间,区间的两个端点分别为\(i\),\(j\)

因为老张最后停留到\(i\)点和最后停留到\(j\)点贡献的价值不一样

所以我们定义\(f[i][j][0]\)为关闭区间\([i,j]\)的路灯后回到\(i\)的最小花费

\(f[i][j][1]\)为关闭区间\([i,j]\)的路灯后回到\(j\)的最小花费

同时我们定义\(wz[i]\)为第\(i\)盏路灯的位置,\(gl[i]\)为第\(i\)盏灯的功率,\(sum[i]\)为前\(i\)盏路灯的功率之和

对于\(f[i][j][0]\),它可以由\(f[i+1][j][0]\)或者\(f[i+1][j][1]\)转移而来

\(f[i][j][0]=f[i+1][j][0]+(wz[i+1]-wz[i])*(sum[i]+sum[n]-sum[j])\)



\(f[i][j][0]=f[i+1][j][1]+(wz[j]-wz[i])*(sum[i]+sum[n]-sum[j]))\)



因此,\(f[i][j][0]=min(f[i+1][j][0]+(wz[i+1]-wz[i])*(sum[i]+sum[n]-sum[j]),f[i+1][j][1]+(wz[j]-wz[i])*(sum[i]+sum[n]-sum[j]));\)

同理,\(f[i][j][1]=min(f[i][j-1][1]+(wz[j]-wz[j-1])*(sum[i-1]+sum[n]-sum[j-1]),f[i][j-1][0]+(wz[j]-wz[i])*(sum[i-1]+sum[n]-sum[j-1]));\)

问题就迎刃而解

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=55;
int f[maxn][maxn][2];
int wz[maxn],gl[maxn],sum[maxn];
int main(){
memset(f,0x3f,sizeof(f));
int n,c;
scanf("%d%d",&n,&c);
f[c][c][1]=f[c][c][0]=0;
for(int i=1;i<=n;i++){
scanf("%d%d",&wz[i],&gl[i]);
sum[i]=sum[i-1]+gl[i];
}
for(int d=2;d<=n;d++){
for(int i=1;i<=n-d+1;i++){
int j=i+d-1;
f[i][j][0]=min(f[i+1][j][0]+(wz[i+1]-wz[i])*(sum[i]+sum[n]-sum[j]),f[i+1][j][1]+(wz[j]-wz[i])*(sum[i]+sum[n]-sum[j]));
f[i][j][1]=min(f[i][j-1][1]+(wz[j]-wz[j-1])*(sum[i-1]+sum[n]-sum[j-1]),f[i][j-1][0]+(wz[j]-wz[i])*(sum[i-1]+sum[n]-sum[j-1]));
}
}
printf("%d\n",min(f[1][n][0],f[1][n][1]));
return 0;
}

洛谷 P1220 关路灯 区间DP的更多相关文章

  1. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  2. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  3. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  4. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  5. 洛谷P1220 关路灯

    洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...

  6. P1220 关路灯——区间dp

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...

  7. 洛谷——P1220 关路灯

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...

  8. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  9. 洛谷P1220 关路灯【区间dp】

    题目:https://www.luogu.org/problemnew/show/P1220 题意:给定n盏灯的位置和功率,初始时站在第c盏处. 关灯不需要时间,走的速度是1单位/秒.问把所有的灯关掉 ...

随机推荐

  1. Java学习之第二天

    一.流程控制 1.顺序结构:自上而下,依次执行(从上到下,一直走下去) 2.选择结构:(1)if .if—else.嵌套if (2)switch(mod){ case 1:执行代码 case 2:执行 ...

  2. 【微信H5】 Redirect_uri参数错误解决方法

    1 https://open.weixin.qq.com/connect/oauth2/authorize?appid=wx14127af0bc9fd367&redirect_uri=http ...

  3. 【shell】十分钟轻松入门;如果没入门,您吐口口水再走吧!

    一.什么是shell? Shell是什么? 1.Shell 是一个程序,Linux默认是用bash. Shell 是一个用 C 语言编写的程序,既是一种命令语言,又是一种程序设计语言,是用户使用Lin ...

  4. 🧑🏻‍💻数据库简介及Mac平台环境搭建🧑🏻‍💻

    数据库 存储数据的演变过程 如果没有使用数据库,我们自己存放文件,数据格式是千差万别的,完全取决于我们自己,例如: """ # 张三 zhangsan|123|read ...

  5. RabbitMQ系列之【CentOS6.5安装RabbitMQ】

    环境准备 操作系统:CentOS 6.5 Final RabbitMQ: 3.1.5 Python: 2.7.11 ErLang: R16B02 安装预环境(少什么安装什么) yum -y insta ...

  6. Asp.Net Mvc 控制器详解

    理解控制器 控制器的角色 (1)中转作用:控制器通过前面的学习大家应该知道它是一个承上启下的作用,根据用户输入,执行响应行为(动 作方法),同时在行为中调用模型的业务逻辑,返回给用户结果(视图). ( ...

  7. [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式

    题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...

  8. CentOS7.5搭建Hadoop2.7.6完全分布式集群

    一 完全分布式集群搭建 Hadoop官方地址:http://hadoop.apache.org/ 1  准备3台客户机 1.2 关闭防火墙,设置静态IP,主机名 关闭防火墙,设置静态IP,主机名此处略 ...

  9. WPS2016ProPlus_normal 安装包+序列号

    WPS OFFICE 2016 安装 链接:https://pan.baidu.com/s/1dfjNFDxcl1n2fvYTt9c86A 提取码: ij8e 下载解压:.txt是序列号,.exe是安 ...

  10. cb51a_c++_STL_算法_根据第n个元素排序nth_element

    cb51a_c++_STL_算法_根据第n个元素排序nth_elementnth_element(b,n,e),比如最大的5个数排序,或者最小的几个数nth_element(b,n,e,p)对比:pa ...