分类: C/C++

这里介绍两种方式使用stm32的定时器:直接操作寄存器和使用st的官方的库文件。
相比较而言,直接操作定时器比较简洁,对着寄存器看十分明了。而使用库文件有一点晕头转向。
(个人观点)
程序如下:(以下程序在DX32的例程修改而来,使用的是比较古老的3.0固件库)
1、timer.c文件
#include "STM32Lib\\stm32f10x.h"
void TIM2_Configuration(void)
{
 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
 TIM_OCInitTypeDef  TIM_OCInitStructure;
 u16 CCR1_Val = 4000;
 u16 CCR2_Val = 2000;
 u16 CCR3_Val = 1000;
 u16 CCR4_Val = 500; 
 /* TIM2 clock enable */
   RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
 
 /* 基础设置*/
 TIM_TimeBaseStructure.TIM_Period = 10000;   //计满值 
 TIM_TimeBaseStructure.TIM_Prescaler = 7200-1;     //预分频,此值+1为分频的除数
 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;   //
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
 
 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
 
 /* 比较通道1*/
 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Inactive;        //输出比较非主动模式
 TIM_OCInitStructure.TIM_Pulse = CCR1_Val;  
 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;  //极性为正
   
 TIM_OC1Init(TIM2, &TIM_OCInitStructure);
 TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);    //禁止OC1重装载,其实可以省掉这句,因为默认是4路都不重装的.
 
 /*比较通道2 */        
 TIM_OCInitStructure.TIM_Pulse = CCR2_Val;  
 
 TIM_OC2Init(TIM2, &TIM_OCInitStructure); 
 TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);
 
 /* 比较通道3 */         
 TIM_OCInitStructure.TIM_Pulse = CCR3_Val;  
 
 TIM_OC3Init(TIM2, &TIM_OCInitStructure);
 TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);
 
 /* 比较通道4 */       
 TIM_OCInitStructure.TIM_Pulse = CCR4_Val;  
 
 TIM_OC4Init(TIM2, &TIM_OCInitStructure);
 TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);
 
 /*使能预装载*/
 TIM_ARRPreloadConfig(TIM2, ENABLE);
 /*预先清除所有中断位*/
 TIM_ClearITPendingBit(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4|TIM_IT_Update);
 /* 4个通道和溢出都配置中断*/
 TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4|TIM_IT_Update, ENABLE);
 
 
 /* 允许TIM2开始计数 */
 TIM_Cmd(TIM2, ENABLE);
}
void TIM3_Configuration(u16 p,u16 psc)
{
RCC->APB1ENR|=1<<1;//TIM3时钟使能
//自动装载寄存器
TIM3->ARR=p; //设定定时器自动重装值
//PSC预分频寄存器
TIM3->PSC=psc; //设定定时器的分频系数
TIM3->DIER|=1<<0; //允许更新中断
TIM3->DIER|=1<<6; //允许触发中断
TIM3->CR1|=0X01; //使能定时器3(这里面包括计数方向为向上计数)
}
#if 0
void TIM4_Configuration(void)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
 TIM_OCInitTypeDef  TIM_OCInitStructure;
 /* TIM4 clock enable */
   RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
 
 /* 基础设置*/
 TIM_TimeBaseStructure.TIM_Period = 10000;   //计满值 
 TIM_TimeBaseStructure.TIM_Prescaler = 7200-1;     //预分频,此值+1为分频的除数
 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;   //
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
 TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
 
 
 /*使能预装载*/
 TIM_ARRPreloadConfig(TIM4, ENABLE);
 /*预先清除所有中断位*/
 TIM_ClearITPendingBit(TIM4, TIM_IT_Update);
 
 TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE);
 
 
 /* 允许TIM2开始计数 */
 TIM_Cmd(TIM4, ENABLE);
}
#else 
void TIM_Configuration(u16 p,u16 psc)
{
RCC->APB1ENR|=1<<2;//TIM4时钟使能
//自动装载寄存器
TIM4->ARR=p; //设定定时器自动重装值
//PSC预分频寄存器
TIM4->PSC=psc; //设定定时器的分频系数
TIM4->DIER|=1<<0; //允许更新中断
TIM4->DIER|=1<<6; //允许触发中断
TIM4->CR1|=0X01; //使能定时器3(这里面包括计数方向为向上计数)
}
#endif
上程序中,定时器2被配置成多路捕获模式,定时器3是直接操作寄存器进行配置的。
定时器4用了两种配置方式,使用固件库和直接操作寄存器。可以切换。效果一样。
需要注意的是,stm32103RBT6的通用定时器只有2、3、4.(没有5)
2、stm32f10x_it.c文件
/*******************************************************************************
* Function Name  : TIM2_IRQHandler TIM2中断
* Description    : This function handles TIM2 global interrupt request.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
unsigned int cnt=0;
unsigned int flag=0;
void TIM2_IRQHandler(void)
{
 if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)
 {
  /*必须清空标志位*/
  TIM_ClearITPendingBit(TIM2, TIM_IT_CC1);
 
  //可添加功能块......
 
 }
 else if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)
 {
  TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
 
  //可添加功能块......
 }
 else if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)
 {
  TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
  
  //可添加功能块......
 }
 else if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET)
 {
    TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);
     
    //可添加功能块......
 }
 if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
 {
  TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
  //flag=1;//计时满标志位置位
  //cnt++;//每TIM_Period计时满变量加一
 }
}
/*******************************************************************************
* Function Name  : TIM3_IRQHandler
* Description    : This function handles TIM3 global interrupt request.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void TIM3_IRQHandler(void)
{
if(TIM3->SR&0X0001)
{
cnt++;
flag=1;
}
TIM3->SR&=~(1<<0);
}
/*******************************************************************************
* Function Name  : TIM4_IRQHandler
* Description    : This function handles TIM4 global interrupt request.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void TIM4_IRQHandler(void)
{
 if(TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET)
 {
     TIM_ClearITPendingBit(TIM4, TIM_IT_Update);
        cnt++;
  flag=1;
 }  
}
可以看到,定时器2有多个处理的事件,四个通道的计数溢出和定时器的总溢出。具体事件根据应用来配置。
另外,以上代码只是对三个通用定时器进行测试,具体应用根据情况来定。
3、NVIC.c文件
#include "STM32Lib\\stm32f10x.h"

//设置所有的中断允许
void NVIC_Configuration(void)
{
 NVIC_InitTypeDef NVIC_InitStructure;
 
  /* Timer2中断*/
 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
 NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 4;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);

#if 1
 /* Configure one bit for preemption priority */
 /* Timer3中断*/
 NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);
 
  /* Timer4中断*/
 NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);
#endif
 /*UART1*/
 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);
}
 

 
4、main.c文件
#include "STM32Lib\\stm32f10x.h"
#include "hal.h"
#include "stdio.h"
#include "string.h"
extern unsigned int cnt;
extern unsigned int flag;
int fputc(int ch, FILE *f)  
{  
 //USART_SendData(USART1, (u8) ch);  
 
 USART1->DR = (u8) ch;  
 
 /* Loop until the end of transmission */  
 
 while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)   
 {   
 }   
 return ch;  
}
int main(void)

 CanTxMsg msg;
 msg.StdId=0x11;
 msg.DLC=8;
 msg.IDE=CAN_ID_STD;
 msg.RTR=CAN_RTR_DATA;
 memset(msg.Data,0x11,8);
 ChipHalInit();   //片内硬件初始化
 ChipOutHalInit();  //片外硬件初始化
 
 for(;;)
 {
 can_send(&msg);
 if(flag)
 {
 flag=0;
 
 printf("cnt is %d\n",cnt);
 }
 } 
}
本程序使用了串口、定时器,通过串口将当前计数值发给PC。
同时通过can总线对外发送数据
另外使用了printf,程序中有相应的配置。
5、can.c文件
#include "STM32Lib\\stm32f10x.h"
#include "hal.h"
#include <string.h>
//CAN总线的发送接收管脚的初始化
void CAN_Configuration(void)
{
 GPIO_InitTypeDef GPIO_InitStructure;
 //RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,ENABLE);
 //RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
 
 
 
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);         
 /* PA11-CAN RX */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; 
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
 GPIO_Init(GPIOA, &GPIO_InitStructure);
 
 /*PA12-CAN TX */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
 GPIO_Init(GPIOA, &GPIO_InitStructure);

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
// RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
}

/*******************************************************************************
**CAN中断测试
*******************************************************************************/
void CAN_Interrupt(void)
{
 CAN_InitTypeDef        CAN_InitStructure;
 CAN_FilterInitTypeDef  CAN_FilterInitStructure;
// CanTxMsg TxMessage;
 
 /* CAN register init */
 CAN_DeInit(CAN1);
 CAN_StructInit(&CAN_InitStructure);
 
 /* CAN cell init */
 /* CAN cell init */
 CAN_InitStructure.CAN_TTCM=DISABLE;  //时间触发
 CAN_InitStructure.CAN_ABOM=DISABLE;  //自动离线管理
 CAN_InitStructure.CAN_AWUM=DISABLE;  //自动唤醒
 CAN_InitStructure.CAN_NART=DISABLE;  //ENABLE:错误不自动重传 DISABLE:重传
 CAN_InitStructure.CAN_RFLM=DISABLE;
 CAN_InitStructure.CAN_TXFP=DISABLE;
 CAN_InitStructure.CAN_Mode=CAN_Mode_Normal;  //CAN_Mode_LoopBack,CAN_Mode_Normal
 CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;   //1-4
 CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;   //1-16
 CAN_InitStructure.CAN_BS2=CAN_BS2_3tq;   //1-8
 CAN_InitStructure.CAN_Prescaler=4;    //波特率为 36/(4*(1+5+3))=1000k
 CAN_Init(CAN1,&CAN_InitStructure);
 
 /* CAN 过滤器设置 */
 CAN_FilterInitStructure.CAN_FilterNumber=0;
 CAN_FilterInitStructure.CAN_FilterMode=CAN_FilterMode_IdMask;
 CAN_FilterInitStructure.CAN_FilterScale=CAN_FilterScale_32bit;
 CAN_FilterInitStructure.CAN_FilterIdHigh=0x0000;
 CAN_FilterInitStructure.CAN_FilterIdLow=0x0000;
 CAN_FilterInitStructure.CAN_FilterMaskIdHigh=0x0000;
 CAN_FilterInitStructure.CAN_FilterMaskIdLow=0x0000;
 CAN_FilterInitStructure.CAN_FilterFIFOAssignment=CAN_FIFO0;
 CAN_FilterInitStructure.CAN_FilterActivation=ENABLE;
 CAN_FilterInit(&CAN_FilterInitStructure);
 
 /* 允许FMP0中断*/ 
 CAN_ITConfig(CAN1,CAN_IT_FMP0, ENABLE);
}/*
typedef struct
{
  uint32_t StdId;
  uint32_t ExtId;
  uint8_t IDE;
  uint8_t RTR;
  uint8_t DLC;
  uint8_t Data[8];
} CanTxMsg;
*/
//发送一个2字节的数据
void SendCan(u16 dat)
{
 CanTxMsg TxMessage;
 
 TxMessage.ExtId=0x01;
 TxMessage.IDE=CAN_ID_EXT;
 TxMessage.RTR=CAN_RTR_DATA;
 TxMessage.DLC=2;
 TxMessage.Data[0]=dat&0xff;
 TxMessage.Data[1]=dat>>8;
 
 CAN_Transmit(CAN1,&TxMessage);
}
#if 1
int can_send(CanTxMsg  *pTransmitBuf)
{
  u8 TransmitMailbox=0;
  CanTxMsg TxMessage;
  if(pTransmitBuf -> DLC > 8)
  {
       return  1;
  }
  /* transmit */
  TxMessage.StdId=pTransmitBuf ->StdId;//用来设定标准标识符(0-0x7ff,11位)
  //TxMessage.ExtId=pTransmitBuf ->ExtId;
  TxMessage.RTR=  pTransmitBuf ->RTR;//设置RTR位为数据帧
  TxMessage.IDE=  pTransmitBuf ->IDE;//标识符扩展位,为标准帧
  TxMessage.DLC=  pTransmitBuf ->DLC;//设置数据长度
  //根据DLC字段的值,将有效数据拷贝到发送数据寄存器
  memcpy(TxMessage.Data, pTransmitBuf ->Data,pTransmitBuf ->DLC);
  TransmitMailbox = CAN_Transmit(CAN1,&TxMessage);
  TransmitMailbox=TransmitMailbox;//加上这句话就是防止编译器产生警告
  return 1;
}
#endif
在调用can_send(CanTxMsg  *pTransmitBuf)发送数据之前,要对can总线进行相应的配置。
6、hal.c文件
/***************************************************
**HAL.c
**主要用于芯片硬件的内部外围和外部外围的初始化,两大INIT函数
**在MAIN中调用,使MAIN函数中尽量与硬件库无关
***************************************************/
//STM32F103RBT6有三个通用定时器,定时器2、3、4;操作基本一致
#include "STM32Lib\\stm32f10x.h"

//各个内部硬件模块的配置函数
extern void GPIO_Configuration(void);   //GPIO
extern void RCC_Configuration(void);   //RCC
extern void USART_Configuration(void);   //串口
extern void NVIC_Configuration(void);   //NVIC
extern void TIM2_Configuration(void);
extern void TIM3_Configuration(u16 p,u16 psc);
extern void TIM4_Configuration(void);
extern void TIM_Configuration(u16 p,u16 psc);
extern void CAN_Configuration(void);
extern void CAN_Interrupt(void);
/*******************************
**函数名:ChipHalInit()
**功能:片内硬件初始化
*******************************/
void  ChipHalInit(void)
{
 //初始化时钟源
 RCC_Configuration();
 
 //初始化GPIO
 GPIO_Configuration();
 
 //初始化中断源
 NVIC_Configuration();
 //初始化串口
 USART_Configuration();
 
 //初始化定时器
 //TIM2_Configuration();
 //
 //TIM3_Configuration(10000,7199);

 //TIM4_Configuration();
 TIM_Configuration(10000,7199);
 //初始化CAN总线
 CAN_Configuration();
 //初始化CAN总线接收中断
 CAN_Interrupt();
}
 
/*********************************
**函数名:ChipOutHalInit()
**功能:片外硬件初始化
*********************************/
void  ChipOutHalInit(void)
{
 
}

stm32之定时器彻底研究的更多相关文章

  1. STM32——通用定时器基本定时功能

    STM32——————通用定时器基本定时功能                                                                           1.  ...

  2. STM32通用定时器(转载)

    STM32的定时器功能很强大,学习起来也很费劲儿. 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册-}才搞明 ...

  3. Stm32高级定时器(四)

    Stm32高级定时器(四) 1 编码器接口模式 1.1 编码器原理 什么是正交?如果两个信号相位相差90度,则这两个信号称为正交.由于两个信号相差90度,因此可以根据两个信号哪个先哪个后来判断方向.根 ...

  4. Stm32高级定时器(三)

    Stm32高级定时器(三) 1 互补输出和死区插入 1.1 死区:某个处于相对无效状态的时间或空间 本来OCX信号与OCXREF时序同相同步,OCXN信号与OCXREF时序反相同步.但为了安全考虑,以 ...

  5. Stm32高级定时器(二)

    Stm32高级定时器(二) 1 主从模式:主?从? 谈论主从,可知至少有两个以上的触发或者驱动信号,stm32内部有多个定时器,可以相互之间驱动或者控制. 主模式:定时器使能只受驱动时钟控制或者输出控 ...

  6. Stm32高级定时器(一)

    Stm32高级定时器(一) 1 定时器的用途 2 高级定时器框图 3 时基单元 4 通道 1 定时器的用途 已知一个波形求另一个未知波形(信号长度和占空比) 已知波形的信号长度和占空比产生一个相应的波 ...

  7. STM32普通定时器(TIM2-7)的时钟源

    STM32普通定时器(TIM2-7)的时钟源

  8. STM32 基于定时器的PWM发生器

    脉冲宽度调制(PWM),是英文"Pulse Width Modulation" 的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术.简单一点,就 ...

  9. STM32通用定时器原理

    /************************************************************************************************ 转载 ...

随机推荐

  1. 教学之Treap

    放在前面的话 本蒟蒻因为最近的题目总是搞点奇奇怪怪的平衡树,就去学了下\(Treap\) 现在来总结一下 由于本人是个蒟蒻,本文可能有部分错误,麻烦各位读者大佬在评论区提醒 什么是\(Treap\) ...

  2. 第15.42节、PyQt输入部件:QFontComboBox、QLineEdit、QTextEdit、QPlainText功能详解

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 一.引言 输入部件量比较多,且功能很丰富,但除了用于编写编辑器.浏览器 ...

  3. PyQt(Python+Qt)学习随笔:QTreeView树形视图的rootIsDecorated属性

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.属性说明 QTreeView树形视图的rootIsDecorated属性用于控制是否展示对顶层项 ...

  4. PyQt学习随笔:Model/View架构中多个视图之间选择数据项同步

    我们知道多个视图之间通过使用相同的model就可以实现数据的共享(具体请参考< PyQt学习随笔:ListView控件的视图和数据模型分离案例>),除了数据的共享之外,多个视图之间还可以同 ...

  5. 关于kettle前后无依赖项关系的解决办法

    前几日我发了一个关于从cube里提取数据的kettle流程图,当时我测试了是正确的.今天我将N个这样的流程放到一个job里批量处理的时候,错误出现了,纠结了很久.我始终无法理解为什么单独执行是正确的, ...

  6. iOS崩溃日志 如何看

    日志主要分为六个部分:进程信息.基本信息.异常信息.线程回溯.线程状态和二进制映像. 我们在进行iPhone应用测试时必然会在"隐私"中找到不少应用的崩溃日志,但是不会阅读对于很多 ...

  7. 学习一下 SpringCloud (一)-- 从单体架构到微服务架构、代码拆分(maven 聚合)

    一.架构演变 1.系统架构.集群.分布式系统 简单理解 (1)什么是系统架构? [什么是系统架构?] 系统架构 描述了 在应用程序内部,如何根据 业务.技术.灵活性.可扩展性.可维护性 等因素,将系统 ...

  8. 如何在苹果电脑上创建一个html格式文件,并在浏览器正确打开

    之前一直使用windows系统的电脑,创建文件很简单,改格式也非常的简单.但换了苹果电脑,如何创建一个HTML文件?却把我给整蒙了. 首先,为什么mac上不能直接新建文本文件? 因为mac一都是以应用 ...

  9. 题解 CF504E 【Misha and LCP on Tree】

    PullShit 倍增和树剖的差距!!! 一个 TLE, 一个 luogu 最优解第三!!! 放个对比图(上面倍增,下面轻重链剖分): 不过这是两只 log 非正解... Solution \(LCP ...

  10. 零基础的Java小白如何准备初级开发的面试

    对于各位Java程序员来说,只要能有实践的机会,哪怕工资再低,公司情况再一般,只要自己上心努力,就可能在短时间内快速提升,甚至在工作2年后进大厂都有希望,因为项目里真实的开发实践环境是平时学习不能模拟 ...