Hive-常见调优方式 && 两个面试sql
Hive作为大数据领域常用的数据仓库组件,在设计和开发阶段需要注意效率。影响Hive效率的不仅仅是数据量过大;数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等因素都对Hive的效率有影响。对Hive的调优既包含对HiveQL语句本身的优化,也包含Hive配置项和MR方面的调
整。
从以下三个方面展开:
架构优化
参数优化
SQL优化
1.架构方面
执行引擎方面针对公司内平台的资源,选择更合适的更快的引擎,比如MR、TEZ、Spark等,
如果选择是TEZ引擎,可以在优化器时候开启向量化的优化器,另外可以选择成本优化器CBO,配置分别如下:
set hive.vectorized.execution.enabled = true; -
- 默认 false
set hive.vectorized.execution.reduce.enabled = true; -
- 默认 false
SET hive.cbo.enable=true; --从 v0.14.0默认
true
SET hive.compute.query.using.stats=true; -- 默认false
SET hive.stats.fetch.column.stats=true; -- 默认false
SET hive.stats.fetch.partition.stats=true; -- 默认true
在表的设计上优化,比如选择分区表,分桶表,以及表的存储格式,为了减少数据传输,可以使用压缩的方式,下面给几个参数(更多参数可以查看官网)
-- 中间结果压缩
SET
hive.intermediate.compression.codec=org.apache.hadoop.io.compress.SnappyCodec ;
-- 输出结果压缩
SET hive.exec.compress.output=true;
SET mapreduce.output.fileoutputformat.compress.codec =org.apache.hadoop.io.compress.SnappyCodc
2.参数优化
第二部分是参数优化,其实上面架构部分,有部分也是通过参数来控制的,这一部分的参数控制主要有下面几个方面
本地模式、严格模式、JVM重用、并行执行、推测执行、合并小文件、Fetch模式
2.1 本地模式
当数据量较小的时候,启动分布式处理数据会比较慢,启动时间较长,不如本地模式快,用下面的参数来调整
SET hive.exec.mode.local.auto=true; -- 默认 false
小
SET hive.exec.mode.local.auto.inputbytes.max=50000000; --输入文件的大小小于 hive.exec.mode.local.auto.inputbytes.max 配置的大
SET hive.exec.mode.local.auto.input.files.max=5; -- 默认 4 map任务的数量小于 hive.exec.mode.local.auto.input.files.max 配置的
大小
2.2 严格模式
这其实是个开关,满足下面三个语句时候,就会失败,如果不开启就正常执行,开启后就让这些语句自动失败
hive.mapred.mode=nostrict
-- 查询分区表时不限定分区列的语句;
-- 两表join产生了笛卡尔积的语句;
-- 用order by来排序,但没有指定limit的语句
2.3 Jvm重用
在mr里面,是以进程为单位的,一个进程就是一个Jvm,其实像短作业,这些进程能够重用就会很快,但是它的缺点是会等任务执行完毕后task插槽,这个在数据倾斜时候较为明显。开启这个使用下面的参数
SET mapreduce.job.jvm.numtasks=5;
2.4 并行执行
Hive的查询会转为stage,这些stage并不是相互依赖的,可以并行执行这些stage,使用下面的参数
SET hive.exec.parallel=true; -- 默认false
SET hive.exec.parallel.thread.number=16; -- 默认8
2.5 推测执行
这个参数的作用是,使用空间资源来换取得到最终结果的时间,比如由于网络,资源不均等原因,某些任务运行特别慢,会启动备份进程处理同一份数据,并最终选用最先成功的计算结果作为最终结果。
set mapreduce.map.speculative=true
set mapreduce.reduce.speculative=true
set hive.mapred.reduce.tasks.speculative.execution=true
2.6 合并小文件
在map执行前面,先合并小文件来减少map数
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
在任务结束后,合并小文件
# 在 map-only 任务结束时合并小文件,默认true
SET hive.merge.mapfiles = true;
# 在 map-reduce 任务结束时合并小文件,默认false
SET hive.merge.mapredfiles = true;
# 合并文件的大小,默认256M
SET hive.merge.size.per.task = 268435456;
# 当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge
SET hive.merge.smallfiles.avgsize = 16777216;
2.7 Fetch模式
最后一种fetch模式,则是在某些情况下尽量不跑mr,比如查询几个字段,全局查找,字段查,limit查等情况
hive.fetch.task.conversion=more
3.sql优化
这一部分较复杂,可能涉及到数据倾斜问题,至于数据倾斜问题一直是大数据处理的不可比避免的一个问题,处理方式也较多
3.1 sql优化
sql优化是开发人员最容易控制的部分,往往是经验使之,大约总结一下又下面的方式
列,分区拆解,sort by 代替 order by, group by 代替count(distinct) ,group by的预聚合(通过参数来控制),倾斜配置项,map join,单独过滤空值,适当调整map 和 reduces数,这些在工作中几乎都会碰到,尽可能去优化他们呢是你要做的
3.2 倾斜均衡配置项
这个配置与 group by 的倾斜均衡配置项异曲同工,通过 hive.optimize.skewjoin来配置,默认false。如果开启了,在join过程中Hive会将计数超过阈值 hive.skewjoin.key (默认100000)的倾斜key对应的行临时写进文件中,然后再启动另一个job做map join生成结果。通过 hive.skewjoin.mapjoin.map.tasks 参数还可以控制第二个job的mapper数量,默认1000
3.3 单独处理倾斜key
如果倾斜的 key 有实际的意义,一般来讲倾斜的key都很少,此时可以将它们单独抽取出来,对应的行单独存入临时表中,然后打上一个较小的随机数前缀(比如0~9),最后再进行聚合。不要一个Select语句中,写太多的Join。一定要了解业务,了解数据。(A0-A9)分成多条语句,分步执行;(A0-A4; A5-A9);先执行大表与小表的关联;
4.两个SQL
4.1 找出全部夺得3连贯的队伍
team,year
活塞,1990
公牛,1991
公牛,1992
--
-- 1 排名
select team, year,
row_number() over (partition by team order by year) as rank
from t1;
-- 2 获取分组id
select team, year,
row_number() over (partition by team order by year) as rank,
(year -row_number() over (partition by team order by year)) as groupid
from t1;
-- 3 分组求解
select team, count(1) years
from (select team,
(year -row_number() over (partition by team order by year)) as groupid
from t1
) tmp
group by team, groupid
having count(1) >= 3;
4.2 找出每个id在在一天之内所有的波峰与波谷值
波峰:
这一时刻的值 > 前一时刻的值
这一时刻的值 > 后一时刻的值
波谷:
这一时刻的值 < 前一时刻的值
这一时刻的值 < 后一时刻的值
id time price 前一时刻的值(lag) 后一时刻的值(lead)
sh66688, 9:35, 29.48 null 28.72
sh66688, 9:40, 28.72 29.48 27.74
sh66688, 9:45, 27.74
sh66688, 9:50, 26.75
sh66688, 9:55, 27.13
sh66688, 10:00, 26.30
sh66688, 10:05, 27.09
sh66688, 10:10, 26.46
sh66688, 10:15, 26.11
sh66688, 10:20, 26.88
sh66688, 10:25, 27.49
sh66688, 10:30, 26.70
sh66688, 10:35, 27.57
sh66688, 10:40, 28.26
sh66688, 10:45, 28.03
-- 思路:关键是找到波峰波谷的特征
-- 波峰的特征: 大于前一个时间段、后一个时间段的值
-- 波谷的特征: 小于前一个时间段、后一个时间段的值
-- 找到这个特征SQL就好写了
select id, time, price,
case when price > beforeprice and price > afterprice then "波峰"
when price < beforeprice and price < afterprice then "波谷" end as feature
from (select id, time, price,
lag(price) over (partition by id order by time) beforeprice,
lead(price) over (partition by id order by time) afterprice
from t2
)tmp
where (price > beforeprice and price > afterprice) or
(price < beforeprice and price < afterprice);
吴邪,小三爷,混迹于后台,大数据,人工智能领域的小菜鸟。
更多请关注
Hive-常见调优方式 && 两个面试sql的更多相关文章
- SQL调优简介及调优方式
引导语:我曾有一种感觉,不管何种调优方式,索引是最根本的方法,是一切优化手法的内功,所以一下我们 将讨论一些和索引相关的调优方式.索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多 ...
- Hive(十)Hive性能调优总结
一.Fetch抓取 1.理论分析 Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算.例如:SELECT * FROM employees;在这种情况下,Hive可以简单 ...
- Hive参数调优
调优 Hive提供三种可以改变环境变量的方法,分别是: (1)修改${HIVE_HOME}/conf/hive-site.xml配置文件: 所有的默认配置都在${HIVE_HOME}/conf/hiv ...
- hive的调优
调优 1 Fetch抓取(Hive可以避免进行MapReduce) Hive中对某些情况的查询可以不必使用MapReduce计算.例如:SELECT * FROM employees;在这种情况下,H ...
- WLAN-AC+AP射频一劳永逸的调优方式
AP射频调优组网图 射频调优简介 射频调优的主要功能就是动态调整AP的信道和功率,可以使同一AC管理的各AP的信道和功率保持相对平衡,保证AP工作在最佳状态.WLAN网络中,AP的工作状态会受到周围环 ...
- Hive 企业调优
9.企业级调优 9.1 Fetch 抓取 Fetch 抓取:Hive 中对某些情况的查询可以不必使用 MapReduce 计算: hive.fetch.task.conversion:more 9.2 ...
- Hadoop、Hbase基本命令及调优方式
HDFS基本命令 接触大数据挺长时间了,项目刚刚上完线,趁着空闲时间整理下大数据hadoop.Hbase等常用命令以及各自的优化方式,当做是一个学习笔记吧. HDFS命令基本格式:Hadoop fs ...
- Tomcat+MySQL常见调优参数
一.Tomcat 调优 (一).Tomcat内存优化 参数一: vim /tomcat/bin/catalina.sh CATALINA_OPTS="-server -Xms128m -Xm ...
- hive tez调优(3)
根据.方案最右侧一栏是一个8G VM的分配方案,方案预留1-2G的内存给操作系统,分配4G给Yarn/MapReduce,当然也包括了HIVE,剩余的2-3G是在需要使用HBase时预留给HBase的 ...
随机推荐
- K8s 二、(1、kubeadm部署Kubernetes集群)
准备工作 满足安装 Docker 项目所需的要求,比如 64 位的 Linux 操作系统.3.10 及以上的内核版本: x86 或者 ARM 架构均可: 机器之间网络互通,这是将来容器之间网络互通的前 ...
- ACM-古老的密码(排序qsort)
古老的密码 题目描述:给定两个长度一样且不超过100的字符串,判断是否能把其中一个字符串的各个字母重排,之后对26个字母做一个一一映射,使得两个字符串相同例如,JWPUDJSTVP重排后可以得到WJD ...
- jvm-本地方法接口
什么是本地方法 简单地讲,一个Native Methodt是一个Java调用非Java代码的接囗.一个Native Method是这样一个Java方法:该方法的实现由非Java语言实现,比如C.这个特 ...
- uva10891 Game of Sum(博弈+区间dp+优化)
题目:点击打开链接 题意:两个人做游戏,共有n个数,每个人可以任选一端取任意多连续的数,问两个人都想拿最多的情况下,先手最多比后手多拿多少分数. 思路:这题一开始想到的是用dp[i][j]表示区间[i ...
- 【bzoj 3433】{Usaco2014 Jan} Recording the Moolympics(算法效率--贪心)
题意:给出n个区间[a,b),有2个记录器,每个记录器中存放的区间不能重叠.求2个记录器中最多可放多少个区间. 解法:贪心.只有1个记录器的做法详见--关于贪心算法的经典问题(算法效率 or 动态规划 ...
- P1020 导弹拦截(LIS)
题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...
- poj3757 Training little cats
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11496 Accepted: 2815 Description Face ...
- Codeforces Round #496 (Div. 3) E1. Median on Segments (Permutations Edition) (中位数,思维)
题意:给你一个数组,求有多少子数组的中位数等于\(m\).(若元素个数为偶数,取中间靠左的为中位数). 题解:由中位数的定义我们知道:若数组中\(<m\)的数有\(x\)个,\(>m\)的 ...
- 再记一次 应用服务器 CPU 暴高事故分析
一:背景 1. 前言 大概有2个月没写博客了,不是不想写哈
- k8s二进制部署 - traefik安装
配置traefik资源清单rbac.yaml 配置traefik资源清单 rbac.yaml apiVersion: v1 kind: ServiceAccount metadata: name: t ...