想学习一下LCA倍增,先 水一个黄题 学一下ST表

ST表

介绍:

这是一个运用倍增思想,通过动态规划来计算区间最值的算法

算法步骤:

  1. 求出区间最值

  2. 回答询问

求出区间最值:

f[i][j]来存储从第 j 个点开始,向后 2 ^ i - 1 个点中的最值(包括本身)

利用二分法的思想,将区间 [ j,j +(2 ^ i)- 1 ] 平均(大概)分成两半

可以算出,区间 [ j,j +(2 ^ i)- 1 ] 的长度为 2 ^ i

所以一半的长度为 2 ^ i - 1

那么分成的两个区间就为 [ j,j +(2 ^(i - 1)- 1 ] 和 [ j +(2 ^ i - 1 ),j +(2 ^ i)- 1 ] 。

毫无疑问,

f[i][j] = max(f[i - 1][j],f[i - 1][j +(1 << i - 1)])

这样递推式就出来了

现在来想一下:

f[0][j]就是从 j 开始向后数第 2 ^ 0 - 1 个点的最值,区间为 [ j,j ]

不用考虑,f[0][j]就是第 j 个数本身

好了,现在边界也得出来了,可以开始 dp 了

上代码:

void prew() {
F1(i, 1, n) f[0][i] = a[i]; // 给边界赋值,a[i] 存的是数列的第 i 个数
int kf = log2(n); // 得出数列最多可以向后跳几个 2 的幂,n 为数列长度
F1(i, 1, kf) { // 枚举区间的长度 2 ^ i
for (int j = 1; j + (1 << i) - 1 <= n; j++) // 枚举起点
f[i][j] = max(f[i - 1][j], f[i - 1][j + (1 << i - 1)]); // 递推式
}
}

回答询问:

由于 log2 运算可能会出现实数,而我们又用整数类型来存储,所以可能会出现两个区间不能完全覆盖整个区间的情况,得出的 f[i][j]不够精准

最简单的方法就是用两个区间覆盖

反正又没要求两个区间不能重叠~~

可以选用f[k][l]f[k][r-(1<<k)+1]来覆盖f[l][r]

所以f[l][r] = max(f[k][l],f[k][r -(1 << k)+ 1])(k 为区间 [l,r] 的长度的 log2)

再上代码:

int ask(int l, int r) {
int k = log2(r - l + 1); // 求出区间最大的 log2 值
return max(f[k][l], f[k][r - (1 << k) + 1]); // 返回区间 [l,r] 的最大值
}

完整代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <cmath>
#include <algorithm> // 妈妈再也不怕我的头文件不够使啦~~
#define MAXN 100100
#define INF 0x3f3f3f3f
#define LL long long
#define F1(i, a, b) for (LL i = a; i <= b; ++i) // 懒人必备神器
#define F2(i, a, b) for (LL i = a; i >= b; --i)
using namespace std; int f[31][MAXN], a[MAXN];
//f[i][j]表示从 j 往后 2 ^ i - 1 个数中的最大值
int n, m; inline int read() { // 快读
int sto = 0, fg = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') fg = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
sto = (sto << 1) + (sto << 3) + (ch ^ 48);
ch = getchar();
}
return sto * fg;
} void prew() { // 预处理 dp
F1(i, 1, n) f[0][i] = a[i];
int kf = log2(n);
F1(i, 1, kf) {
for (int j = 1; j + (1 << i) - 1 <= n; j++)
f[i][j] = max(f[i - 1][j], f[i - 1][j + (1 << i - 1)]);
}
} int ask(int l, int r) { // 回答询问
int k = log2(r - l + 1);
return max(f[k][l], f[k][r - (1 << k) + 1]);
} int main()
{
int l, r, ans;
n = read(); m = read();
F1(i, 1, n) a[i] = read();
prew();
F1(i, 1, m) {
l = read(); r = read();
ans = ask(l, r);
printf("%d\n", ans);
}
return 0;
}

模板题:

洛谷P3865

【算法】ST表的更多相关文章

  1. 【基础算法-ST表】入门 -C++

    前言 学了树状数组看到ST表模板跃跃欲试的时候发现完全没思路,因为给出的查询的时间实在太短了!几乎是需要完成O(1)查询.所以ST表到底是什么神仙算法能够做到这么快的查询? ST表 ST表是一个用来解 ...

  2. 线段树(two value)与树状数组(RMQ算法st表)

    士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比 ...

  3. 浅谈ST表

    发现自己学的一直都是假的ST表QWQ. ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到$O(nlogn)$预处理,$O(1)$查询最值 算法 ST表是利用 ...

  4. ST表学习笔记

    ST表是一种利用DP思想求解最值的倍增算法 ST表常用于解决RMQ问题,即求解区间最值问题 接下来以求最大值为例分步讲解一下ST表的建立过程: 1.定义 f[i][j]表示[i,i+2j-1]这个长度 ...

  5. 浅谈 倍增/ST表

    命题描述 给定一个长度为 \(n\) 的序列,\(m\) 次询问区间最大值 分析 上面的问题肯定可以暴力对吧. 但暴力肯定不是最优对吧,所以我们直接就不考虑了... 于是引入:倍增 首先,倍增是个什么 ...

  6. LCA 算法(一)ST表

    介绍一种解决最近公共祖先的在线算法,st表,它是建立在线性中的rmq问题之上.   代码:   //LCA: DFS+ST(RMQ) #include<cstdio> #include&l ...

  7. 算法学习 - ST表 - 稀疏表 - 解决RMQ问题

    2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...

  8. [算法模板]ST表

    [算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...

  9. 【算法学习笔记】RMQ问题与ST表

    \(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \( ...

  10. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

随机推荐

  1. Arduino IDE 开发 ESP-01S/ESP-01物联网实战检测温度湿度上传MQTT服务器

    一.硬件准备 USB转ESP8266两块.DHT11温度湿度传感器.ESP8266-01/ESP8266-01一块(如果学习的话多买几块,ESP-01/ESP-01S的区别) USB转ESP8266 ...

  2. 【WPF】 问题总结-RaidButton修改样式模板后作用区域的变化

    最近工作需要,需要重绘RaidButton控件,具体想要达成的的效果是这样的: 当点击按钮任意一个地方的时候,按钮的背景改变. 于是我是这样对控件模板进行修改的: <Style x:Key=&q ...

  3. 入门oj 5499: 讲话模式

    Description 每个人说话都有口头禅,现给出一个字符串,请求出其中出现次数最多的单词(不区分大小写). Input 输入一行,长度小于等于1048576的字符串输入至少包含一个字母或数字 Ou ...

  4. IDEA:配置Tomcat并运行应用

    1.File->ProjectStructre->Artifacts 如下界面 3.下一步:如图所示 4.选择相应的Module就行 5.第一次运行程序时最好选择运行的配置,否则可能运行的 ...

  5. String--常见面试题

    String s = new String("xyz") 创建了几个对象? 实例分析1 javac编译代码,然后用javap来反编译,执行javap -c Test 从结果来看,l ...

  6. go语言中运算符

    Go语言学习笔记(运算符)-day01 go语言中与其他语言一样,存在多种运算符,下表列出了go语言中的运算符类型 算数运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 算数运算符 运算符 描述 ...

  7. WixVersionControl Wix项目版本控制

    原文链接:https://www.swack.cn/wiki/001565675133949eff0d3d5a51f48288cf6d8248905e28f000/001569821278313e6b ...

  8. Laya 踩坑日记-BitmapFont 不显示空格

    项目中有用到艺术字,美术通过 bmfont64 将字体导给我了,结果发现在应用上 空格不显示 如图: 今天去深究了一下这个问题,发现是底层没封装好,然后自己改了一下下面是改过的 BitmapFont ...

  9. c++ 参数传递与返回值详解(reference)

    pass by value or pass by reference? 我们知道,当函数在传递值的时候,会新建一个变量(没有名字)储存这个值 然后传递.降低程序运行的效率. 如果使用引用(refere ...

  10. 【Linux】Linux下如何分区及如何格式化

    环境:CentOS7.1 磁盘大小是1.8T 将磁盘/dev/sda分一个分区,分区类型为xfs fdisk /dev/sda n    --创建新分区 p  --创建分区类型为主分区 1  --主分 ...