想学习一下LCA倍增,先 水一个黄题 学一下ST表

ST表

介绍:

这是一个运用倍增思想,通过动态规划来计算区间最值的算法

算法步骤:

  1. 求出区间最值

  2. 回答询问

求出区间最值:

f[i][j]来存储从第 j 个点开始,向后 2 ^ i - 1 个点中的最值(包括本身)

利用二分法的思想,将区间 [ j,j +(2 ^ i)- 1 ] 平均(大概)分成两半

可以算出,区间 [ j,j +(2 ^ i)- 1 ] 的长度为 2 ^ i

所以一半的长度为 2 ^ i - 1

那么分成的两个区间就为 [ j,j +(2 ^(i - 1)- 1 ] 和 [ j +(2 ^ i - 1 ),j +(2 ^ i)- 1 ] 。

毫无疑问,

f[i][j] = max(f[i - 1][j],f[i - 1][j +(1 << i - 1)])

这样递推式就出来了

现在来想一下:

f[0][j]就是从 j 开始向后数第 2 ^ 0 - 1 个点的最值,区间为 [ j,j ]

不用考虑,f[0][j]就是第 j 个数本身

好了,现在边界也得出来了,可以开始 dp 了

上代码:

void prew() {
F1(i, 1, n) f[0][i] = a[i]; // 给边界赋值,a[i] 存的是数列的第 i 个数
int kf = log2(n); // 得出数列最多可以向后跳几个 2 的幂,n 为数列长度
F1(i, 1, kf) { // 枚举区间的长度 2 ^ i
for (int j = 1; j + (1 << i) - 1 <= n; j++) // 枚举起点
f[i][j] = max(f[i - 1][j], f[i - 1][j + (1 << i - 1)]); // 递推式
}
}

回答询问:

由于 log2 运算可能会出现实数,而我们又用整数类型来存储,所以可能会出现两个区间不能完全覆盖整个区间的情况,得出的 f[i][j]不够精准

最简单的方法就是用两个区间覆盖

反正又没要求两个区间不能重叠~~

可以选用f[k][l]f[k][r-(1<<k)+1]来覆盖f[l][r]

所以f[l][r] = max(f[k][l],f[k][r -(1 << k)+ 1])(k 为区间 [l,r] 的长度的 log2)

再上代码:

int ask(int l, int r) {
int k = log2(r - l + 1); // 求出区间最大的 log2 值
return max(f[k][l], f[k][r - (1 << k) + 1]); // 返回区间 [l,r] 的最大值
}

完整代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <cmath>
#include <algorithm> // 妈妈再也不怕我的头文件不够使啦~~
#define MAXN 100100
#define INF 0x3f3f3f3f
#define LL long long
#define F1(i, a, b) for (LL i = a; i <= b; ++i) // 懒人必备神器
#define F2(i, a, b) for (LL i = a; i >= b; --i)
using namespace std; int f[31][MAXN], a[MAXN];
//f[i][j]表示从 j 往后 2 ^ i - 1 个数中的最大值
int n, m; inline int read() { // 快读
int sto = 0, fg = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') fg = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
sto = (sto << 1) + (sto << 3) + (ch ^ 48);
ch = getchar();
}
return sto * fg;
} void prew() { // 预处理 dp
F1(i, 1, n) f[0][i] = a[i];
int kf = log2(n);
F1(i, 1, kf) {
for (int j = 1; j + (1 << i) - 1 <= n; j++)
f[i][j] = max(f[i - 1][j], f[i - 1][j + (1 << i - 1)]);
}
} int ask(int l, int r) { // 回答询问
int k = log2(r - l + 1);
return max(f[k][l], f[k][r - (1 << k) + 1]);
} int main()
{
int l, r, ans;
n = read(); m = read();
F1(i, 1, n) a[i] = read();
prew();
F1(i, 1, m) {
l = read(); r = read();
ans = ask(l, r);
printf("%d\n", ans);
}
return 0;
}

模板题:

洛谷P3865

【算法】ST表的更多相关文章

  1. 【基础算法-ST表】入门 -C++

    前言 学了树状数组看到ST表模板跃跃欲试的时候发现完全没思路,因为给出的查询的时间实在太短了!几乎是需要完成O(1)查询.所以ST表到底是什么神仙算法能够做到这么快的查询? ST表 ST表是一个用来解 ...

  2. 线段树(two value)与树状数组(RMQ算法st表)

    士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比 ...

  3. 浅谈ST表

    发现自己学的一直都是假的ST表QWQ. ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到$O(nlogn)$预处理,$O(1)$查询最值 算法 ST表是利用 ...

  4. ST表学习笔记

    ST表是一种利用DP思想求解最值的倍增算法 ST表常用于解决RMQ问题,即求解区间最值问题 接下来以求最大值为例分步讲解一下ST表的建立过程: 1.定义 f[i][j]表示[i,i+2j-1]这个长度 ...

  5. 浅谈 倍增/ST表

    命题描述 给定一个长度为 \(n\) 的序列,\(m\) 次询问区间最大值 分析 上面的问题肯定可以暴力对吧. 但暴力肯定不是最优对吧,所以我们直接就不考虑了... 于是引入:倍增 首先,倍增是个什么 ...

  6. LCA 算法(一)ST表

    介绍一种解决最近公共祖先的在线算法,st表,它是建立在线性中的rmq问题之上.   代码:   //LCA: DFS+ST(RMQ) #include<cstdio> #include&l ...

  7. 算法学习 - ST表 - 稀疏表 - 解决RMQ问题

    2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...

  8. [算法模板]ST表

    [算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...

  9. 【算法学习笔记】RMQ问题与ST表

    \(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \( ...

  10. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

随机推荐

  1. [leetcode]304Range Sum Query 2D - Immutable动态规划计算二维数组中子数组的sum

    303一维数组的升级版,方法就是用二维数组res存下从(0,0)到当前位置的sum,存的方法是动态规划,看着二维数组画圈比较好搞清楚其中的加减法 算子数组的sum的时候也是和存差不多的逻辑,就是某一部 ...

  2. Java学习日报8.3

    package car;class Person{ private String name; private int age; private Car car; public Person(Strin ...

  3. Solon rpc 1.2.18 发布,突出Rpc特性

    Solon 是一个微型的Java RPC开发框架.项目从2018年启动以来,参考过大量前人作品:历时两年,3500多次的commit:内核保持0.1m的身材,超高的跑分,良好的使用体验.支持:Rpc. ...

  4. 如何下载youtube的视频?

    导言 当youtube视频需要下载时,发现需要会员等其他限制 别急,下面就是比较稳定的方法 准备 gitub链接 youtube-dl github 官网链接 官网 按照官网提示下载对应版本 我这里是 ...

  5. 对Java集合的概述

    前言 大部分编程语言都提供了数组来保存对象,数组是非常重要的数据结构之一.但是数组在初始化时就已经定义了数组长度,不可变,使用起来颇为麻烦.因此,Java 在 JDK 1.2 版本中添加了集合框架,用 ...

  6. 【剑指 Offer】10-I.斐波那契数列

    题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - ...

  7. Openstack neutron 网络服务 (七)

    引用: https://docs.openstack.org/ocata/zh_CN/install-guide-rdo/common/get-started-networking.html neut ...

  8. Rabbitmq可靠消息投递,消息确认机制

    前言 我们知道,消息从发送到签收的整个过程是 Producer-->Broker/Exchange-->Broker/Queue-->Consumer,因此如果只是要保证消息的可靠投 ...

  9. Java自学笔记1206

    字符串比较string1.equals(string2) 代码如下: 1 package Demo_1206; 2 3 import java.util.Scanner; 4 5 public cla ...

  10. Centos7 添加用户及设置权限

    一.添加用户 1.登录root 用户 [gau@localhost /]$ su Password: # 输入密码 [root@localhost /]# 2.添加用户 [root@localhost ...