双倍经验题

由于我先做的 P6754,所以一切思路基于 P6754 的题目

“ P6754 这题就是 P3413 的究极弱化版 ” --By Aliemo.


P6754 Description

在给定的 \([a,b]\) 区间内求长度 \(\ge\) \(2\) 的非回文串的个数


Solution

设 \(f[i][j][k]\) 表示长度为 \(i\),最高位为 \(j\) ,次高位为 \(k\) 的非回文串的个数

显然有状态转移方程式

\[f[i][j][k]=\sum_{j/k/l=0}^9f[i-1][k][l]\mid j!=k\&\&j!=l\&\&k!=l
\]

对于答案的统计,就是在求出所有的非回文串个数后,通过给定的边界来判断

对于 \(ans_{l,r}\) 可以转化为 \(ans_{1,r}-ans_{1,l-1}\)


注意,本题的求解,对于区间端点的处理,最好将其转化为字符串操作

便于求非回文串的个数

像这样

for(int i = len;i >= 1;i --) {
a[i] = x[len - i] - '0';
sum = sum * 10 + a[i];
}

其他的注意事项放在代码里


Code

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring>
#define int long long
#define rr register using namespace std; char A[1010],B[1010];
int f[1010][20][20];
int a[1010]; int read(){
int s=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') w=1;ch=getchar();}
while(ch>='0'&&ch<='9') s=(s<<1)+(s<<3)+ch-'0',ch=getchar();
return s*w;
} void init(){
for(rr int i=2;i<=1000;i++)
for(rr int j=0;j<=9;j++)
for(rr int k=0;k<=9;k++){
if(j==k) continue;
for(rr int l=0;l<=9;l++)
if(k!=l&&j!=l) f[i][j][k]+=f[i-1][k][l];//
if(i==2) f[i][j][k]++;
}
} int solve(char x[]){
bool t=1;memset(a,0,sizeof a);
int ans=0,cnt=0,sum=0,len=strlen(x),ll1=-1,ll2=-1;
for(rr int i=len;i>=1;i--){a[i]=x[len-i]-'0';sum=sum*10+a[i];}
sum++;ans+=10;if(len==1) return sum;//长度为 1 的 10 个数直接加//如果长度为 1 ,不符合规定
for(rr int i=2;i<len;i++)
for(rr int j=1;j<=9;j++)//排除前导 0
for(rr int k=0;k<=9;k++)
ans+=f[i][j][k];
for(rr int i=len;i>=2;i--){
for(rr int j=0;j<a[i];j++){
if(i==len&&j==0) continue;
for(rr int k=0;k<=9;k++)
if(j!=k&&ll1!=k&&ll1!=j&&ll2!=j) ans+=f[i][j][k];
}
if(ll1==a[i]||ll2==a[i]){t=0;break;}//判断前一位与前两位
ll2=ll1;ll1=a[i];
}
if(t==1)for(rr int i=0;i<=a[1];i++)if(i!=ll1&&i!=ll2)ans++;//最后一位单独处理
return ans;
} signed main(){
init();cin>>A;cin>>B;
int Ans=solve(B)-solve(A);
int len=strlen(A),vis=0;
for(rr int i=1;i<len;i++)
if(A[i]==A[i-1]||(A[i]==A[i-2]&&i>1)){vis=1;break;}
if(!vis) Ans++;printf("%lld",Ans);
return 0;
}


P3413 Description

在给定的 \([a,b]\) 区间内求长度 \(\ge\) \(2\) 的非回文串的个数


Solution

按照上面的思路,比较两位上相同的

比较麻烦

换个角度,如果用总串数减去非回文串数,那不就是回文串数了


思考过程与原理同上

注意取模

代码一改就行


Code

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring>
#define int long long
#define rr register
#define Mod 1000000007 using namespace std; char A[1010],B[1010];
int f[1010][20][20];
int a[1010]; int read(){
int s=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') w=1;ch=getchar();}
while(ch>='0'&&ch<='9') s=(s<<1)+(s<<3)+ch-'0',ch=getchar();
return s*w;
} void init(){
for(rr int i=2;i<=1000;i++)
for(rr int j=0;j<=9;j++)
for(rr int k=0;k<=9;k++){
if(j==k) continue;
for(rr int l=0;l<=9;l++)
if(k!=l&&j!=l) f[i][j][k]=(f[i][j][k]+f[i-1][k][l])%Mod;
if(i==2) f[i][j][k]=(f[i][j][k]+1)%Mod;
}
} int solve(char x[]){//sum 统计总串数,减去 ans 即可
bool t=1;memset(a,0,sizeof a);
int ans=0,cnt=0,sum=0,len=strlen(x),ll1=-1,ll2=-1;
for(rr int i=len;i>=1;i--){a[i]=x[len-i]-'0';sum=(sum*10+a[i])%Mod;}
sum++;ans+=10;if(len==1) return 0;
for(rr int i=2;i<len;i++)
for(rr int j=1;j<=9;j++)
for(rr int k=0;k<=9;k++)
ans=(ans+f[i][j][k])%Mod;
for(rr int i=len;i>=2;i--){
for(rr int j=0;j<a[i];j++){
if(i==len&&j==0) continue;
for(rr int k=0;k<=9;k++)
if(j!=k&&ll1!=k&&ll1!=j&&ll2!=j) ans=(ans+f[i][j][k])%Mod;
}
if(ll1==a[i]||ll2==a[i]){t=0;break;}
ll2=ll1;ll1=a[i];
}
if(t==1)for(rr int i=0;i<=a[1];i++)if(i!=ll1&&i!=ll2)ans=(ans+1)%Mod;
return (sum-ans+Mod)%Mod;
} signed main(){
init();cin>>A;cin>>B;
int len=strlen(A),Ans=solve(B)-solve(A);
for(rr int i=1;i<len;i++)
if(A[i]==A[i-1]||(A[i]==A[i-2]&&i>1)){Ans=(Ans+1)%Mod;break;}
printf("%lld",(Ans+Mod)%Mod);
return 0;
}

洛谷P3413 P6754的更多相关文章

  1. 洛谷P3413 SAC#1 - 萌数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...

  2. [洛谷P3413]SAC#1 - 萌数

    题目大意:求$[l,r](0\leqslant l<r< 10^{1001})$中存在长度至少为$2$的回文串的数字数 题解:数位$DP$,发现如果有回文串,若长度为偶数,一定有两个相同的 ...

  3. 洛谷P3413 SAC#1 - 萌数(数位dp)

    题目描述 辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌! 好在在他眼里,并不是所有数都是萌的.只有满足“存在长度至少为2的回文子串”的数是萌的——也就是说,101是萌的,因为101本身就是一个回文数:1 ...

  4. 洛谷 P3413 SAC#1 - 萌数

    题意简述 求l~r之间存在长度至少为2的回文子串的正整数的个数 题解思路 数位DP 注意到有偶数长度的回文串必有长度为2的回文串,有奇数长度的回文串必有长度为3的回文串 所以只需判断与前一位,前两位是 ...

  5. 【洛谷P3413】萌数

    题目大意:求区间 [l,r] 内萌数的个数,其中萌数定义为数位中存在长度至少为 2 的回文子串的数字. 题解:l, r 都是 1000 位级别的数字,显然是一道数位 dp 的题目,暴力直接去世. 发现 ...

  6. 洛谷$P3413$ 萌数 $SAC\#1$ 数位$dp$

    正解:数位$dp$ 解题报告: 传送门! 非常套路的数位$dp$,,,?打起来就很爽昂,,,不要脑子,我就很爱嘻嘻嘻 然后$[l,r]$这种问题不显然考虑套路地搞成$[1,l-1]$和$[1,r]$嘛 ...

  7. 洛谷 P3413 【萌数】

    敲完这篇题解,我就,我就,我就,嗯,好,就这样吧... 思路分析: 首先我们要知道一个回文串的性质--假如说一个[l-1,r+1]的串是回文的,那么[l,r]一定也是回文的. 所以我们只要记录前一个数 ...

  8. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  9. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

随机推荐

  1. sql将两个查询结果拼接到一块,去掉重复,动态sql

    <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...

  2. 配置 nginx 访问资源目录,nginx配置 root 与 alias 的区别

    比如说想要把 /home/source 目录作为资源目录,那么需要如下配置: location /source/ { #识别url路径后,nginx会到/home/文件路径下,去匹配/source r ...

  3. JavaDailyReports10_15

    2020-10-15 16:12:16 今天学习了如何实现倒计时控制程序的运行: 1 package timer; 2 3 import java.util.Calendar; 4 import ja ...

  4. UDP 通讯方式

    1.创建套接字:2.绑定端口:3.收发数据: 收到的数据中包含发送方的端口信息4.关闭套接字:

  5. 第十二章节 BJROBOT 摄像头寻线 【ROS全开源阿克曼转向智能网联无人驾驶车】

    关于摄像头:普通摄像头, USB 免驱摄像头都可以使用. 1.如下图所示,用红色胶布在地板上贴一条线,小车摆放在线的一头处,让线在小车的中间位置,摄像头角度往下调整倾斜一点,好让摄像头识别到红线.注意 ...

  6. 读《白帽子讲web安全》 ——笔记

    第二章 浏览器安全 什么是同源策略? 同源策略,它是由Netscape提出的一个著名的安全策略. 现在所有支持JavaScript 的浏览器都会dao使用这个策略. 所谓同源是指,域名,协议,端口相同 ...

  7. Android stdio使用时遇到的一些问题

    (1)android stdio加载布局时 Exception raised during rendering: com/android/util/PropertiesMap             ...

  8. 对象存储 COS 全新集成媒体处理功能

    根据<2020年中国网络视听发展研究报告>,截至2020年6月,我国网络视听用户规模达9.01亿,网民使用率95.8%.这表明视频行业已经成为新的流量洼地,而抖音.快手等视频平台的崛起也让 ...

  9. Redis学习之路(四)Redis-cluster java api操作

    import redis.clients.jedis.HostAndPort;import redis.clients.jedis.JedisCluster;import java.util.Hash ...

  10. [ABP教程]第三章 创建、更新和删除图书

    Web应用程序开发教程 - 第三章: 创建,更新和删除图书 关于本教程 在本系列教程中, 你将构建一个名为 Acme.BookStore 的用于管理书籍及其作者列表的基于ABP的应用程序. 它是使用以 ...