题目描述

原题来自:HackerRank Equations

求不定方程:

1/x+1/y=1/n!

的正整数解 (x,y) 的数目。

输入格式

一个整数 n 。

输出格式

一个整数,表示有多少对 (x,y) 满足题意。答案对 1e9+7 取模。

样例

样例输入

2

样例输出

3

样例说明

共有三个数对 (x,y) 满足条件,分别是 (3,6),(4,4) 和 (6,3)。

数据范围与提示

对于 30% 的数据,n<=100;
对于全部数据,n<=1e6。

___________________________________________________________________

数论题,关键一步真的想不到!

由于题目是正整数解,所以x,y都大于n

题目很容易化为n!=xy/(x+y)

由于x,y大于n!。所以x设为n!+a,y设为n!+b。

上面的式子就可以化为(n!)^2=a*b

也就是上面的式子,a,b有多少中解!

所以,首先求出n中的质数,然后求出所有的质数在n!中出现的次数,而(n!)^2中的后的质数的个数要乘以2,让后就是求所有因数的个数。

___________________________________________________________________

 1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn=1e6;
4 int n;
5 int prime[maxn],cnt[maxn];
6 bool sz[maxn];
7 int js;
8 void getprime(int n)
9 {
10 sz[0]=sz[1]=1;
11 for(int i=2;i<=n;++i)
12 {
13 if(sz[i]==0)prime[js++]=i;
14 for(int j=0;j<js&&prime[j]*i<=n;++j)
15 {
16 sz[prime[j]*i]=1;
17 if(i%prime[j]==0)break;
18 }
19 }
20 }
21 void fenjie(int x)
22 {
23 for(int i=0;prime[i]*prime[i]<=x;++i)
24 while(x%prime[i]==0)
25 {
26 x/=prime[i];
27 cnt[prime[i]]++;
28 }
29 if(x!=1)cnt[x]++;
30 }
31 long long ans=1;
32 int main()
33 {
34 cin>>n;
35 getprime(n);
36 for(int i=2;i<=n;++i)fenjie(i);
37 for(int i=2;i<=n;++i)ans=(ans*((cnt[i]<<1)+1))%1000000007;
38 cout<<ans;
39 return 0;
40 }

LOJ10202樱花——数论的更多相关文章

  1. Luogu1445 [Violet]樱花 ---- 数论优化

    Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...

  2. 【bzoj2721】[Violet 5]樱花 数论

    题目描述 输入 输出 样例输入 2 样例输出 3 题解 数论 设1/x+1/y=1/m,那么xm+ym=xy,所以xy-xm-ym+m^2=m^2,所以(x-m)(y-m)=m^2. 所以解的数量就是 ...

  3. bzoj 2721[Violet 5]樱花 数论

    [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 671  Solved: 395[Submit][Status][Discuss ...

  4. 【BZOJ2721】樱花(数论)

    [BZOJ2721]樱花(数论) 题面 BZOJ 题解 先化简一下式子,得到:\(\displaystyle n!(x+y)=xy\),不难从这个式子中得到\(x,y\gt n!\). 然后通过\(x ...

  5. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...

  6. 2018.10.26 bzoj2721: [Violet 5]樱花(数论)

    传送门 推一波式子: 1x+1y=1n!\frac 1 x+\frac 1 y=\frac 1 {n!}x1​+y1​=n!1​ =>xy−x∗n!−y∗n!xy-x*n!-y*n!xy−x∗n ...

  7. BZOJ2721 Violet5樱花(数论)

    有(x+y)n!=xy.套路地提出x和y的gcd,设为d,令ad=x,bd=y.则有(a+b)n!=abd.此时d已是和a.b无关的量.由a与b互质,得a+b与ab互质,于是将a+b除过来得n!=ab ...

  8. 【数论】[因数个数]P4167樱花

    题目描述 求不定方程 \(\frac {1}{x} + \frac{1}{y} = \frac{1}{n!}\)的正整数解的个数 \(n \leq 100^6\) Solution 化简得 \(x * ...

  9. bzoj2721 [Violet5]樱花

    bzoj2721 [Violet 5]樱花 给出 \(n\) 求 \(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\) 的正整数解数量 \(\bmod (10^9+7)\) ...

随机推荐

  1. MySQL全面瓦解15:视图

    概述 很多时候,我们会有一些很复杂的数据库操作,比如整合用户的行为数据,那这些数据可能包含用户的餐饮.生活日用.充值消费.交通出行.通讯物流.交通出行.医疗保健.住房物业.运动健康... 基于此,我们 ...

  2. 【代码周边】-GitHub笔记

    ------------恢复内容开始------------ 程序员的宝库github是个好东西,其中开源的项目足够我们的使用,但是如何去精准的获取我们的项目是很多初学者的问题.特别是英语不好的我,一 ...

  3. rocketmq 架构设计

    1 消息存储 消息存储是RocketMQ中最为复杂和最为重要的一部分,本节将分别从RocketMQ的消息存储整体架构.PageCache与Mmap内存映射以及RocketMQ中两种不同的刷盘方式三方面 ...

  4. 第十六章节 BJROBOT 开机自启动服务【ROS全开源阿克曼转向智能网联无人驾驶车】

    1.把小车平放在地板上,用资料里的虚拟机,打开一个终端 ssh 过去主控端运行rosrun robot_upstart install znjrobot/launch/bringup.launch 2 ...

  5. spring boot 部署到tomcat

    网上很多文章描述过,当我按步骤做时会抛各种错误,最后记录下我的做法(成功发布到本地 Tomcat9 ): 1.将项目的启动类Application.java继承SpringBootServletIni ...

  6. log4j2文件结构

    标签结构 Configuration properties Appenders Console PatternLayout File RollingRandomAccessFile Filters T ...

  7. spark bulkload 报错异常:Caused by: java.io.IOException: Added a key not lexically larger than previous

    ------------恢复内容开始------------ Caused by: java.io.IOException: Added a key not lexically larger than ...

  8. RHEL8/CentOS8的网络IP配置

    rhel8与7的区别 在rhel7上,同时支持network.service和NetworkManager.service(简称NM).默认情况下,这2个服务都有开启,但许多人都会将NM禁用掉. 在r ...

  9. vrp OS Switch Rotuer Application

    交换机可以隔离冲突与,路由器可以隔离广播域,这两种设备在企业网络中应用越来越广泛.随着越来越多的终端接入到网络中,网络设备的负担也越来越重,这时网络设备可以通过华为专有的VRP系统来提升运行效率. 通 ...

  10. 详细的String源码解析

    我们常常把String类型的字符串作为HashMap的key,为什么要这样做呢? 因为String是不可变的,一旦初始化就不再改变了,如果被修改将会是一个新对象. @Test public void ...