【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)
题意我就不写了。解法有3种:
1.O(n^2)。2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=1010;
8 int a[N],f[N];
9
10 int mmax(int x,int y) {return x>y?x:y;}
11 int main()
12 {
13 int n,ans=0;
14 scanf("%d",&n);
15 for (int i=1;i<=n;i++) scanf("%d",&a[i]);
16 for (int i=1;i<=n;i++)
17 {
18 f[i]=1;
19 for (int j=1;j<i;j++)
20 if (a[i]>a[j]) f[i]=mmax(f[i],f[j]+1);
21 ans=mmax(ans,f[i]);
22 }
23 printf("%d",ans);
24 return 0;
25 }
1
2.O(n log n)。继正确但不高效的解法后,我们想要对时间复杂度降维。最常见的做法就是二分查找,这题就是把解法1的 j 的O(n)枚举变为O(log n)的二分。那么二分的范围肯定要包含当前的 LIS 的数,而且要知道这些数对应的 f[ ]值。因此,我们只能保存扫完前 i 个选出的最优的 LIS,上述2个条件都可以满足。同时不断扩大和更新(存尽量小的数)这个序列。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=1010;
8 int a[N],f[N];
9
10 int ffind(int l,int r,int x)
11 {
12 if (l==r) return l;
13 int mid=(l+r)>>1;
14 if (x>f[mid]) return ffind(mid+1,r,x);
15 else return ffind(l,mid,x);
16 }
17 int main()
18 {
19 int n,ans=0;
20 scanf("%d",&n);
21 for (int i=1;i<=n;i++) scanf("%d",&a[i]);
22 f[++ans]=a[1];
23 for (int i=2;i<=n;i++)
24 {
25 int x;
26 if (a[i]>f[ans]) x=++ans;
27 else x=ffind(1,ans,a[i]);
28 f[x]=a[i];
29 }
30 printf("%d",ans);
31 return 0;
32 }
2
3.O(n log n)。(参考自蓝书 p62,挖了坑,没时间填了......)
1 for (int i=1;i<=n;i++) g[i]=INF;
2 for (int i=0;i<n;i++)
3 {
4 int k=lower_bound(g+1,g+n+1,A[i])-g;
5 d[i]=k;
6 g[k]=A[i];
7 }
【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)的更多相关文章
- 动态规划模板1|LIS最长上升子序列
LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ - 3903 Stock Exchange(LIS最长上升子序列问题)
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descripti ...
- hdu 5256 序列变换(LIS最长上升子序列)
Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)
POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...
- LIS最长上升子序列O(n^2)与O(nlogn)的算法
动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, ...
- LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 动态规划——E (LIS())最长上升子序列
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Stat ...
随机推荐
- 聊聊 g0
很多时候,当我们跟着源码去理解某种事物时,基本上可以认为是以时间顺序展开,这是编年体的逻辑.还有另一种逻辑,纪传体,它以人物为中心编排史事,使得读者更聚焦于某个人物.以一种新的视角,把所有的事情串连起 ...
- 行业动态 | 利用Cassandra数据库揭开家族祖先的秘密
FamilySearch选择了基于Apache Cassandra的DataStax Enterprise (DSE)来加速用户增长,并通过更快的反应时间.高可用性以及零数据库宕机来提供强大的 ...
- python列表字符串集合常用方法
1.1 列表常用方法 # 1. append 用于在列表末尾追加新的对象a = [1,2,3]a.append(4) # the result : [1,2,3,4]# 2. count方法统计某个 ...
- CSS 奇思妙想边框动画
今天逛博客网站 -- shoptalkshow,看到这样一个界面,非常有意思: 觉得它的风格很独特,尤其是其中一些边框. 嘿嘿,所以来一篇边框特辑,看看运用 CSS,可以在边框上整些什么花样. bor ...
- /etc/hosts文件
这个文件告诉主机哪些域名对应哪些ip,哪些主机名对应哪些ip. 一般也三个域 网络ip地址 主机名或域名 主机名别名 两部分的时候 主机ip地址和主机名
- 【Oracle】instr()函数详解
1)instr()函数的格式 (俗称:字符查找函数) 格式一:instr( string1, string2 ) / instr(源字符串, 目标字符串) 格式二:instr( strin ...
- 4、python+selenium实现12306模拟登录
简介: 这里是利用了selenium+图片识别验证,来实现12306的模拟登录,中间也参考了好几个项目,实现了这个小demo,中间也遇到了很多的坑,主要难点在于图片识别和滑动验证这两个方面,图片识别是 ...
- 前端开发好帮手,eslint配置全知道
eslint让人又爱又恨,原因在于它的默认配置非常严格,动则一个小提示就直接报错不给运行.而在开发调试的过程中,我们想时时得到运行效果,它的严格又很烦. 在安装eslint后,我们可以在package ...
- [Usaco2008 Mar]牛跑步
题目描述 BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M (1 < ...
- 响应式编程库RxJava初探
引子 在读 Hystrix 源码时,发现一些奇特的写法.稍作搜索,知道使用了最新流行的响应式编程库RxJava.那么响应式编程究竟是怎样的呢? 本文对响应式编程及 RxJava 库作一个初步的探索. ...